Silicon Nanospheres Supported on Conductive MXene Nanosheets as Anodes for Lithium-Ion Batteries

被引:13
作者
Zhou, Hui [1 ,2 ]
Zhang, Junying [3 ]
Liu, Jingzhuang [1 ]
Feng, Shuai [1 ,2 ]
Li, Chuanbo [1 ,2 ]
Marsili, Enrico [4 ]
Zhang, Xiaoming [1 ,2 ]
机构
[1] Minzu Univ China, Sch Sci, Beijing 100081, Peoples R China
[2] Minzu Univ China, Optoelect Res Ctr, Beijing 100081, Peoples R China
[3] Beijing Univ Chem Technol, Coll Math & Phys, Beijing 100029, Peoples R China
[4] Nottingham Ningbo China Beacons Excellence Res & I, Ningbo 315103, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2023年 / 6卷 / 01期
基金
中国国家自然科学基金;
关键词
silicon; MXene nanosheets; electrostatic assembly; lithium-ion batteries; anode materials; STORAGE CAPABILITY; SI; DEPOSITION; PARTICLES; CAPACITY; NETWORK; TI3C2;
D O I
10.1021/acsaem.2c02706
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon (Si) anodes are expected to be employed in future for lithium-ion batteries (LIBs), due to their high capacity. However, the main challenge is to assemble Si with conductive materials to increase the conductivity and stability of Si anodes. In this work, we optimized a method to prepare Si nanoparticles (NP)/MXene anode materials for LIBs via electrostatic assembly of positively charged Si nanospheres, coated with poly-diallyl dimethyl ammonium chloride, and negatively charged MXene nanosheets, which increase the number of active sites for strong Si NP attachment and minimize both restacking of MXene nanosheets and Si NP aggregation. The Si NP/ MXene anodes have a capacity of 1917.9 mA h g-1 after 300 charge/discharge cycles at 0.5 A g-1. The electrochemical characterization of Si NP/MXene nanocomposite shows high energy storage, cycle stability, and rate performance. Optimization of Si/MXene composites can improve their performance as anode materials for high energy density LIBs.
引用
收藏
页码:160 / 169
页数:10
相关论文
共 61 条
[1]   Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene) [J].
Alhabeb, Mohamed ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Clark, Leah ;
Sin, Saleesha ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7633-7644
[2]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/nmat2612, 10.1038/NMAT2612]
[3]   Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Ko, Minseong ;
Kim, Kyungho ;
Ahn, Kihong ;
Cho, Jaephil .
JOULE, 2017, 1 (01) :47-60
[4]   Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes [J].
Chan, Candace K. ;
Patel, Reken N. ;
O'Connell, Michael J. ;
Korgel, Brian A. ;
Cui, Yi .
ACS NANO, 2010, 4 (03) :1443-1450
[5]   MXene as a Cation-Selective Cathode Material for Asymmetric Capacitive Deionization [J].
Chen, Bingbing ;
Feng, Aihu ;
Deng, Ruixiang ;
Liu, Kun ;
Yu, Yun ;
Song, Lixin .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (12) :13750-13758
[6]   Recent advancement of SiOx, based anodes for lithium-ion batteries [J].
Chen, Tao ;
Wu, Ji ;
Zhang, Qinglin ;
Su, Xin .
JOURNAL OF POWER SOURCES, 2017, 363 :126-144
[7]   Si alloy/graphite coating design as anode for Li-ion batteries with high volumetric energy density [J].
Du, Zhijia ;
Li, Jianlin ;
Daniel, C. ;
Wood, D. L., III .
ELECTROCHIMICA ACTA, 2017, 254 :123-129
[8]   Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes [J].
Feng, Kun ;
Ahn, Wook ;
Lui, Gregory ;
Park, Hey Woong ;
Kashkooli, Ali Ghorbani ;
Jiang, Gaopeng ;
Wang, Xiaolei ;
Xiao, Xingcheng ;
Chen, Zhongwei .
NANO ENERGY, 2016, 19 :187-197
[9]   Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery [J].
Gendensuren, Bolormaa ;
Oh, Eun-Suok .
JOURNAL OF POWER SOURCES, 2018, 384 :379-386
[10]   Lattice-Coupled Si/MXene Confined by Hard Carbon for Fast Sodium-Ion Conduction [J].
Gou, Li ;
Jing, Weifeng ;
Li, Ying ;
Wang, Mei ;
Hu, Shengliang ;
Wang, Huiqi ;
He, Yan-Bing .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (07) :7268-7277