A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image

被引:4
|
作者
Zhu, Yang [1 ]
Wang, Sen [1 ]
Zhang, Yinhui [1 ]
He, Zifen [1 ]
Wang, Qingjian [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming 650500, Peoples R China
基金
中国国家自然科学基金;
关键词
Vibrations; Transformers; Superresolution; Feature extraction; Image reconstruction; Task analysis; Displacement measurement; Attention mechanism; computer vision; image super-resolution; transformer; visual vibration measurement;
D O I
10.1109/TIM.2022.3222503
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Visual measurement methods are gaining more and more attention in the field of structural body health monitoring due to the advantages of long-range, noncontact, and multipoint monitoring. However, the imaging system is usually affected by many factors, such as distortion, blurring, and noise, which lead to displacement measurement errors after the degradation of the acquired image quality. Therefore, in this article, we propose a structural body image super-resolution network based on a dual transformer architecture to improve the clarity of the collected structural body vibration displacement image to better capture the vibration displacement information of the target. Meanwhile, we design a dual transformer block based on an encoder-decoder architecture for the characteristics of vision-based structural body vibration displacement measurement tasks to better extract structural body image details and edge feature information. In this module, we introduce two different transformers. In addition, modules based on the encoder-decoder architecture focus more on the input and output image information and often ignore the feature information in different layers. Therefore, we introduce an attention mechanism in the network and interact with the feature information in different layers of the encoder-decoder architecture to obtain a better structural body image super-resolution effect. After comparison tests with the rest of the latest and most classical networks as well as the current optimal networks, it is shown that our network obtains excellent image reconstruction results under different structural body vibration image datasets (SETs), which also provides a strong guarantee for the task of accurate vision-based structural body vibration displacement measurement.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Remote Sensing Image Super-Resolution via Dual-Resolution Network Based on Connected Attention Mechanism
    Zhang, Xiangrong
    Li, Zhenyu
    Zhang, Tianyang
    Liu, Fengsheng
    Tang, Xu
    Chen, Puhua
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] Dense Dual-Attention Network for Light Field Image Super-Resolution
    Mo, Yu
    Wang, Yingqian
    Xiao, Chao
    Yang, Jungang
    An, Wei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4431 - 4443
  • [33] Contextual Transformation Network for Lightweight Remote-Sensing Image Super-Resolution
    Wang, Shunzhou
    Zhou, Tianfei
    Lu, Yao
    Di, Huijun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] Multisource Information Fusion Network for Optical Remote Sensing Image Super-Resolution
    Shi, Mengyang
    Gao, Yesheng
    Chen, Lin
    Liu, Xingzhao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 3805 - 3818
  • [35] A Multiscale Aligned Video Super-Resolution Network for Improving Vibration Signal Measurement Accuracy
    Wang, Qingjian
    Wang, Sen
    Chen, Mingfang
    Zhu, Yang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [36] Cytopathology Image Super-Resolution of Portable Microscope Based on Convolutional Window-Integration Transformer
    Zhang, Jinyu
    Cheng, Shenghua
    Liu, Xiuli
    Li, Ning
    Rao, Gong
    Zeng, Shaoqun
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2025, 11 : 77 - 88
  • [37] SRGAT: Single Image Super-Resolution With Graph Attention Network
    Yan, Yanyang
    Ren, Wenqi
    Hu, Xiaobin
    Li, Kun
    Shen, Haifeng
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4905 - 4918
  • [38] Light Field Image Super-Resolution With Transformers
    Liang, Zhengyu
    Wang, Yingqian
    Wang, Longguang
    Yang, Jungang
    Zhou, Shilin
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 563 - 567
  • [39] DTCNet: Transformer-CNN Distillation for Super-Resolution of Remote Sensing Image
    Lin, Cong
    Mao, Xin
    Qiu, Chenghao
    Zou, Lilan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 11117 - 11133
  • [40] Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
    Huang, Chi-En
    Li, Yung-Hui
    Aslam, Muhammad Saqlain
    Chang, Ching-Chun
    SENSORS, 2021, 21 (23)