On well-posedness of the first boundary-value problem within linear isotropic Toupin-Mindlin strain gradient elasticity and constraints for elastic moduli

被引:6
|
作者
Eremeyev, Victor A. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Cagliari, Dept Civil & Environm Engn & Architecture, Cagliari, Italy
[2] Gdansk Univ Technol, Dept Civil & Environm Engn, Gdansk, Poland
[3] Don State Tech Univ, Res & Educ Ctr Mat, Rostov Na Donu, Russia
[4] Univ Cagliari, Cagliari, Italy
[5] Univ Cagliari, DICAAR, Via Marengo 2, I-09123 Cagliari, Italy
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2023年 / 103卷 / 06期
基金
俄罗斯科学基金会;
关键词
SPECTRAL PROPERTIES;
D O I
10.1002/zamm.202200474
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Within the linear Toupin-Mindlin strain gradient elasticity we discuss the well-posedness of the first boundary-value problem, that is, a boundary-value problem with Dirichlet-type boundary conditions on the whole boundary. For an isotropic material we formulate the necessary and sufficient conditions which guarantee existence and uniqueness of a weak solution. These conditions include strong ellipticity written in terms of higher-order elastic moduli and two inequalities for the Lame moduli. The conditions are less restrictive than those followed from the positive definiteness of the deformation energy.
引用
收藏
页数:11
相关论文
共 6 条
  • [1] Strong ellipticity within the Toupin-Mindlin first strain gradient elasticity theory
    Eremeyev, Victor A.
    Lazar, Markus
    MECHANICS RESEARCH COMMUNICATIONS, 2022, 124
  • [2] Strong ellipticity within the Toupin-Mindlin first strain gradient elasticity theory
    Eremeyev, Victor A.
    Lazar, Markus
    MECHANICS RESEARCH COMMUNICATIONS, 2022, 124
  • [3] On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
    Eremeyev, Victor A.
    Lurie, Sergey A.
    Solyaev, Yury O.
    dell'Isola, Francesco
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):
  • [4] On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
    Victor A. Eremeyev
    Sergey A. Lurie
    Yury O. Solyaev
    Francesco dell’Isola
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [5] Mathematical modeling of the elastic properties of cubic crystals at small scales based on the Toupin-Mindlin anisotropic first strain gradient elasticity
    Lazar, Markus
    Agiasofitou, Eleni
    Boehlke, Thomas
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2022, 34 (01) : 107 - 136
  • [6] On weak solutions of the boundary value problem within linear dilatational strain gradient elasticity for polyhedral Lipschitz domains
    Eremeyev, Victor A.
    Dell'Isola, Francesco
    MATHEMATICS AND MECHANICS OF SOLIDS, 2022, 27 (03) : 433 - 445