Synthesis of Ni-Doped Graphene Aerogels for Electrochemical Applications

被引:2
作者
Gonzalez-Barriuso, Marina [1 ,2 ]
Sanchez-Suarez, Mario [1 ]
Gonzalez-Lavin, Judith [1 ]
Arenillas, Ana [1 ]
Rey-Raap, Natalia [1 ]
机构
[1] Inst Carbon Sci & Technol INCAR CSIC, Calle Francisco Pintado Fe 26, Oviedo 33011, Spain
[2] Univ Cantabria, Sch Ind & Telecommun Engineers, Dept Chem & Proc & Resource Engn, Inorgan Chem Grp, Ave Castros S-N, Santander 39005, Spain
关键词
carbon aerogels; graphene; electrical conductivity; porosity; electrochemistry; CARBON; POROSITY; XEROGELS;
D O I
10.3390/gels10030180
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Carbonaceous materials used in most electrochemical applications require high specific surface area, adequate pore size distribution, and high electrical conductivity to ensure good interaction with the electrolyte and fast electron transport. The development of transition metal doped graphene aerogels is a possible solution, since their structure, morphology, and electrical properties can be controlled during the synthesis process. This work aims to synthesize Ni-doped graphene aerogels to study the role of different nickel salts in the sol-gel reaction and their final properties. The characterization data show that, regardless of the nature of the Ni salts, the surface area, volume of micropores, and enveloped density decrease, while the porosity and electrical conductivity increase. However, differences in morphology, mesopore size distribution, degree of order of the carbon structure, and electrical conductivity were observed depending on the type of Ni salt. It was found that nickel nitrate results in a material with a broader mesopore distribution, higher electrical conductivity, and hence, higher electrochemical surface area, demonstrating that graphene aerogels can be easily synthesized with tailored properties to fit the requirements of specific electrochemical applications.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Unveiling the structural transformations of the PW11Co@ZIF-67 nanocomposite induced by thermal treatment [J].
Abdelkader-Fernandez, Victor K. ;
Fernandes, Diana M. ;
Balula, Salete S. ;
Cunha-Silva, Luis ;
Perez-Mendoza, Manuel J. ;
Freire, Cristina .
DALTON TRANSACTIONS, 2022, 51 (46) :17844-17857
[2]   Acid-based resorcinol-formaldehyde xerogels synthesized by microwave heating [J].
Alonso-Buenaposada, Isabel D. ;
Rey-Raap, Natalia ;
Calvo, Esther G. ;
Angel Menendez, J. ;
Arenillas, Ana .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2017, 84 (01) :60-69
[3]   Comparative study on the H2S gas-sensing properties of graphene aerogels synthesized through hydrothermal and chemical reduction [J].
Bibi, Aamna ;
Chen, Chia-Yu ;
Huang, Kuan-Ning ;
Sathishkumar, Nadaraj ;
Chen, Hsin-Tsung ;
Lin, Yi-Feng ;
Yeh, Jui-Ming ;
Santiago, Karen S. .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2024, 154
[4]   Tailoring porosity in carbon materials for supercapacitor applications [J].
Borchardt, L. ;
Oschatz, M. ;
Kaskel, S. .
MATERIALS HORIZONS, 2014, 1 (02) :157-168
[5]   Optimizing the Performance of a Graphitized Carbon Xerogel as Cathode for Sodium Dual-Ion Batteries [J].
Camean, Ignacio ;
Lobato, Belen ;
Rey-Raap, Natalia ;
Dos Santos-Gomez, Lucia ;
Flores-Lopez, Samantha ;
Arenillas, Ana ;
Garcia, Ana Beatriz .
CHEMELECTROCHEM, 2023, 10 (07)
[6]   Carbon xerogels graphitized by microwave heating as anode materials in lithium-ion batteries [J].
Canal-Rodriguez, M. ;
Arenillas, A. ;
Menendez, J. A. ;
Beneroso, D. ;
Rey-Raap, N. .
CARBON, 2018, 137 :384-394
[7]   Graphene-doped carbon xerogel combining high electrical conductivity and surface area for optimized aqueous supercapacitors [J].
Canal-Rodriguez, Maria ;
Arenillas, Ana ;
Rey-Raap, Natalia ;
Ramos-Fernandez, Gloria ;
Martin-Gullon, Ignacio ;
Angel Menendez, J. .
CARBON, 2017, 118 :291-298
[8]   Structure optimization of graphene aerogel-based composites and applications in batteries and supercapacitors [J].
Cao, Liyun ;
Wang, Caiwei ;
Huang, Yixuan .
CHEMICAL ENGINEERING JOURNAL, 2023, 454
[9]   Carbon aerogel evolution: Allotrope, graphene-inspired, and 3D-printed aerogels [J].
Chandrasekaran, Swetha ;
Campbell, Patrick G. ;
Baumann, Theodore F. ;
Worsley, Marcus A. .
JOURNAL OF MATERIALS RESEARCH, 2017, 32 (22) :4166-4185
[10]   In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures [J].
Chen, Wufeng ;
Yan, Lifeng .
NANOSCALE, 2011, 3 (08) :3132-3137