An Integral Sliding-Mode-based Robust Interval Predictive Control for Perturbed Unicycle Mobile Robots

被引:0
作者
Rios, Hector [1 ,3 ]
Mera, Manuel [2 ]
Raissi, Tarek [4 ]
Efimov, Denis [5 ,6 ]
机构
[1] Tecnol Nacl Mexico IT La Laguna, Torreon 27000, Coahuila, Mexico
[2] Inst Politecn Nacl, Sect Grad Studies & Res, ESIME UPT, Cdmx 07340, Mexico
[3] CONAHCYT IxM, Cdmx 03940, Mexico
[4] Conservatoire Natl Arts & Metiers CNAM, Cedr 292,Rue St Martin, F-75141 Paris, France
[5] Univ Lille, INRIA, CNRS, UMR 9189 CRISTAL, F-59000 Lille, France
[6] Informat Technol Mech & Opt Univ, Dept Control Syst & Informat, St Petersburg 197101, Russia
来源
2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC | 2023年
关键词
Unicycle Mobile Robots; Sliding-Mode Control; Model Predictive Control; SYSTEMS; MPC; TRACKING; DESIGN;
D O I
10.1109/CDC49753.2023.10383445
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper contributes to the design of a robust control strategy for the trajectory tracking problem in perturbed unicycle mobile robots. The proposed strategy comprises the design of a robust control law, which is based on an Integral Sliding-Mode Control (ISMC) approach together with an interval predictor-based state-feedback controller and a Model Predictive Control (MPC) scheme. The robust controller deals with some perturbations in the kinematic model, and with state and input constraints that are related to restrictions on the workspace and saturated actuators, respectively. The proposed approach guarantees the exponential convergence to zero of the tracking error. Furthermore, the performance of the proposed approach is validated through some simulations.
引用
收藏
页码:6978 / 6983
页数:6
相关论文
共 21 条
[1]  
Brockett R.W., 1982, Control theory and singular Riemannian geometry, P11
[2]   Analysis and design of integral sliding manifolds for systems with unmatched perturbations [J].
Castanos, Fernando ;
Fridman, Leonid .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (05) :853-858
[3]   Robust Output Feedback MPC for LPV Systems Using Interval Observers [J].
dos Reis de Souza, Alex ;
Efimov, Denis ;
Raissi, Tarek .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) :3188-3195
[4]   Interval Observers for Time-Varying Discrete-Time Systems [J].
Efimov, Denis ;
Perruquetti, Wilfrid ;
Raissi, Tarek ;
Zolghadri, Ali .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (12) :3218-3224
[5]   Control of Nonlinear and LPV Systems: Interval Observer-Based Framework [J].
Efimov, Denis ;
Raissi, Tarek ;
Zolghadri, Ali .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (03) :773-778
[6]   Robust Multi-Model Predictive Control via Integral Sliding Modes [J].
Galvan-Guerra, Rosalba ;
Incremona, Gian Paolo ;
Fridman, Leonid ;
Ferrara, Antonella .
IEEE CONTROL SYSTEMS LETTERS, 2022, 6 :2623-2628
[7]   Avoiding local minima in the potential field method using input-to-state stability [J].
Guerra, M. ;
Efimov, D. ;
Zheng, G. ;
Perruquetti, W. .
CONTROL ENGINEERING PRACTICE, 2016, 55 :174-184
[8]   Asynchronous Networked MPC With ISM for Uncertain Nonlinear Systems [J].
Incremona, Gian Paolo ;
Ferrara, Antonella ;
Magni, Lalo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (09) :4305-4317
[9]  
Leurent E, 2020, IEEE DECIS CONTR P, P1429, DOI 10.1109/CDC42340.2020.9304308
[10]   Robust output feedback model predictive control of constrained linear systems: Time varying case [J].
Mayne, D. Q. ;
Rakovic, S. V. ;
Findeisen, R. ;
Allgoewer, F. .
AUTOMATICA, 2009, 45 (09) :2082-2087