High-entropy materials for electrochemical energy storage devices

被引:10
作者
Qu, Jie [1 ]
Buckingham, Mark A. [1 ]
Lewis, David J. [1 ]
机构
[1] Univ Manchester, Dept Mat, Oxford Rd, Manchester M13 9PL, England
来源
ENERGY ADVANCES | 2023年 / 2卷 / 10期
基金
英国科研创新办公室; 英国工程与自然科学研究理事会;
关键词
PRUSSIAN BLUE ANALOGS; MECHANICAL-PROPERTIES; ANODE MATERIAL; LONG-LIFE; OXIDE; CATHODE; STABILITY; MICROSTRUCTURE; MULTICOMPONENT; BATTERIES;
D O I
10.1039/d3ya00319a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single phased, high-entropy materials (HEMs) have yielded new advancements as energy storage materials. The mixing of manifold elements in a single lattice has been found to induce synergistic effects leading to superior physicochemical properties. In this review, we summarize recent advances of HEMs in energy storage applications such as metal-ion batteries, supercapacitors, and fuel cells. We begin with defining HE materials (HEMs) and discussion of the synthetic methods and characterization techniques appropriate for evaluating HEMs at various length scales. We also discuss the application of a wide variety of HEMs, including HE alloys, oxides, chalcogenides, Prussian blue analogues, and sodium super ionic conductor (NASICON) materials in energy storage systems. Finally, advantages, challenges, and future perspectives of HEMs in energy storage systems are discussed. Lewis and co-workers review the use of high entropy materials in electrochemical energy storage devices.
引用
收藏
页码:1565 / 1590
页数:26
相关论文
共 198 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Energetics of point defects in rocksalt structure transition metal nitrides: Thermodynamic reasons for deviations from stoichiometry [J].
Balasubramanian, Karthik ;
Khare, Sanjay, V ;
Gall, Daniel .
ACTA MATERIALIA, 2018, 159 :77-88
[3]   Effect of synthesis environment on the electrochemical properties of (FeMnCrCoZn)3O4 high-entropy oxides for Liion batteries [J].
Bayraktar, Deniz Okan ;
Lokcu, Ersu ;
Ozgur, Cagla ;
Erdil, Tuncay ;
Toparli, Cigdem .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) :22124-22133
[4]   Room temperature lithium superionic conductivity in high entropy oxides [J].
Berardan, D. ;
Franger, S. ;
Meena, A. K. ;
Dragoe, N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9536-9541
[5]   Colossal dielectric constant in high entropy oxides [J].
Berardan, David ;
Franger, Sylvain ;
Dragoe, Diana ;
Meena, Arun Kumar ;
Dragoe, Nita .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (04) :328-333
[6]   General Solvothermal Synthesis Method for Complete Solubility Range Bimetallic and High-Entropy Alloy Nanocatalysts [J].
Bondesgaard, Martin ;
Broge, Nils Lau Nyborg ;
Mamakhel, Aref ;
Bremholm, Martin ;
Iversen, Bo Brummerstedt .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (50)
[7]   Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications [J].
Braic, V. ;
Balaceanu, M. ;
Braic, M. ;
Vladescu, A. ;
Panseri, S. ;
Russo, A. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2012, 10 :197-205
[8]   Gassing Behavior of High-Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry [J].
Breitun, Ben ;
Wang, Qingsong ;
Schiele, Alexander ;
Tripkovic, Dordije ;
Sarkar, Abhishek ;
Velasco, Leonardo ;
Wang, Di ;
Bhattacharya, Subramshu S. ;
Hahn, Horst ;
Brezesinski, Torsten .
BATTERIES & SUPERCAPS, 2020, 3 (04) :361-369
[9]  
Broge N. L. N., 2020, ANGEW CHEM-GER EDIT, V132, P22104, DOI DOI 10.1002/ANGE.202009002
[10]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946