High-entropy materials for electrochemical energy storage devices

被引:8
作者
Qu, Jie [1 ]
Buckingham, Mark A. [1 ]
Lewis, David J. [1 ]
机构
[1] Univ Manchester, Dept Mat, Oxford Rd, Manchester M13 9PL, England
来源
ENERGY ADVANCES | 2023年 / 2卷 / 10期
基金
英国科研创新办公室; 英国工程与自然科学研究理事会;
关键词
PRUSSIAN BLUE ANALOGS; MECHANICAL-PROPERTIES; ANODE MATERIAL; LONG-LIFE; OXIDE; CATHODE; STABILITY; MICROSTRUCTURE; MULTICOMPONENT; BATTERIES;
D O I
10.1039/d3ya00319a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single phased, high-entropy materials (HEMs) have yielded new advancements as energy storage materials. The mixing of manifold elements in a single lattice has been found to induce synergistic effects leading to superior physicochemical properties. In this review, we summarize recent advances of HEMs in energy storage applications such as metal-ion batteries, supercapacitors, and fuel cells. We begin with defining HE materials (HEMs) and discussion of the synthetic methods and characterization techniques appropriate for evaluating HEMs at various length scales. We also discuss the application of a wide variety of HEMs, including HE alloys, oxides, chalcogenides, Prussian blue analogues, and sodium super ionic conductor (NASICON) materials in energy storage systems. Finally, advantages, challenges, and future perspectives of HEMs in energy storage systems are discussed. Lewis and co-workers review the use of high entropy materials in electrochemical energy storage devices.
引用
收藏
页码:1565 / 1590
页数:26
相关论文
共 198 条
  • [1] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [2] Energetics of point defects in rocksalt structure transition metal nitrides: Thermodynamic reasons for deviations from stoichiometry
    Balasubramanian, Karthik
    Khare, Sanjay, V
    Gall, Daniel
    [J]. ACTA MATERIALIA, 2018, 159 : 77 - 88
  • [3] Effect of synthesis environment on the electrochemical properties of (FeMnCrCoZn)3O4 high-entropy oxides for Liion batteries
    Bayraktar, Deniz Okan
    Lokcu, Ersu
    Ozgur, Cagla
    Erdil, Tuncay
    Toparli, Cigdem
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) : 22124 - 22133
  • [4] Room temperature lithium superionic conductivity in high entropy oxides
    Berardan, D.
    Franger, S.
    Meena, A. K.
    Dragoe, N.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) : 9536 - 9541
  • [5] Colossal dielectric constant in high entropy oxides
    Berardan, David
    Franger, Sylvain
    Dragoe, Diana
    Meena, Arun Kumar
    Dragoe, Nita
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (04): : 328 - 333
  • [6] General Solvothermal Synthesis Method for Complete Solubility Range Bimetallic and High-Entropy Alloy Nanocatalysts
    Bondesgaard, Martin
    Broge, Nils Lau Nyborg
    Mamakhel, Aref
    Bremholm, Martin
    Iversen, Bo Brummerstedt
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (50)
  • [7] Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications
    Braic, V.
    Balaceanu, M.
    Braic, M.
    Vladescu, A.
    Panseri, S.
    Russo, A.
    [J]. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2012, 10 : 197 - 205
  • [8] Gassing Behavior of High-Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry
    Breitun, Ben
    Wang, Qingsong
    Schiele, Alexander
    Tripkovic, Dordije
    Sarkar, Abhishek
    Velasco, Leonardo
    Wang, Di
    Bhattacharya, Subramshu S.
    Hahn, Horst
    Brezesinski, Torsten
    [J]. BATTERIES & SUPERCAPS, 2020, 3 (04) : 361 - 369
  • [9] Broge N. L. N., 2020, Angew. Chem, V132, P22104, DOI DOI 10.1002/ANGE.202009002
  • [10] Nanomaterials for rechargeable lithium batteries
    Bruce, Peter G.
    Scrosati, Bruno
    Tarascon, Jean-Marie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) : 2930 - 2946