Metal-Metal Bonding Process Research Based on Xgboost Machine Learning Algorithm

被引:3
|
作者
Feng, Jingpeng [1 ,2 ]
Zhan, Lihua [1 ,2 ]
Ma, Bolin [1 ,2 ]
Zhou, Hao [1 ,2 ]
Xiong, Bang [1 ,2 ]
Guo, Jinzhan [1 ,2 ]
Xia, Yunni [1 ,2 ]
Hui, Shengmeng [1 ,2 ]
机构
[1] Cent South Univ, State Key Lab Precis Mfg Extreme Serv Performance, Changsha 410083, Peoples R China
[2] Cent South Univ, Light Alloys Res Inst, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
single-lap joints; finite element models; Xgboost machine learning algorithm; interpretation toolkit SHAP; process parameter optimization; SINGLE-LAP JOINTS; SHEAR-STRENGTH; MECHANICAL-PROPERTIES; SURFACE-ROUGHNESS; SPEW;
D O I
10.3390/polym15204085
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Conventionally, the optimization of bonding process parameters requires multi-parameter repetitive experiments, the processing of data, and the characterization of complex relationships between process parameters, and performance must be achieved with the help of new technologies. This work focused on improving metal-metal bonding performance by applying SLJ experiments, finite element models (FEMs), and the Xgboost machine learning (ML) algorithm. The importance ranking of process parameters on tensile-shear strength (TSS) was evaluated with the interpretation toolkit SHAP (Shapley additive explanations) and it optimized reasonable bonding process parameters. The validity of the FEM was verified using SLJ experiments. The Xgboost models with 70 runs can achieve better prediction results. According to the degree of influence, the process parameters affecting the TSS ranked from high to low are roughness, adhesive layer thickness, and lap length, and the corresponding optimized values were 0.89 mu m, 0.1 mm, and 27 mm, respectively. The experimentally measured TSS values increased by 14% from the optimized process parameters via the Xgboost model. ML methods provide a more accurate and intuitive understanding of process parameters on TSS.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Metal-metal bonding in heterobimetallic Ti/M complexes
    Wu, Bing
    Thomas, Christine
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [32] METAL-METAL BONDING IN FREE AND LIGATED NICKEL CLUSTERS
    ROSCH, N
    ACKERMANN, L
    PACCHIONI, G
    INORGANIC CHEMISTRY, 1993, 32 (13) : 2963 - 2964
  • [33] Metal-metal bonding in heterobimetallic Ti/Co complexes
    Wu, Bing
    Thomas, Christine
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [34] Cyclic ruthenium trimer without metal-metal bonding
    Arce, A.J.
    De Sanctis, Y.
    Manzur, J.
    Capparelli, M.V.
    Angewandte Chemie (International Edition in English), 1994, 33 (21): : 2193 - 2195
  • [35] METAL-METAL BONDING IN CLUSTERS OF TRANSITION-METALS
    OPITZ, C
    MULLER, H
    ZEITSCHRIFT FUR CHEMIE, 1987, 27 (03): : 111 - 111
  • [36] Studies of ionomeric polyolefins as adhesives in metal-metal bonding
    Antony, P
    De, SK
    Bhowmick, AK
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 1999, 13 (05) : 561 - 571
  • [37] Metal-Metal Bonding in Bridging Hydride and Alkyl Compounds
    Parkin, Gerard
    METAL-METAL BONDING, 2010, 136 : 113 - 145
  • [38] Revisiting ultra-weak metal-metal bonding
    Rohman, Shahnaz S.
    Kashyap, Chayanika
    Ullah, Sabnam S.
    Mazumder, Lakhya J.
    Sahu, Prem Prakash
    Kalita, Amlanjyoti
    Reza, Sohel
    Hazarika, Pankaj P.
    Borah, Bichitra
    Guha, Ankur Kanti
    CHEMICAL PHYSICS LETTERS, 2019, 730 : 411 - 415
  • [39] Metal-Metal Bonding Properties of Copper Oxide Nanoparticles
    Maeda, Takafumi
    Kobayashi, Yoshio
    Yasuda, Yusuke
    Morita, Toshiaki
    E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2014, 12 : 105 - 108
  • [40] Metal-metal bonding using silver/copper nanoparticles
    Kobayashi, Y.
    Maeda, T.
    Yasuda, Y.
    Morita, T.
    APPLIED NANOSCIENCE, 2016, 6 (06) : 883 - 893