Effect of entanglement in the generalized photon subtraction scheme

被引:6
作者
Bashmakova, E. N. [1 ]
Korolev, S. B. [1 ,2 ]
Golubeva, T. Yu [1 ]
机构
[1] St Petersburg State Univ, Universitetskaya nab 7-9, St Petersburg 199034, Russia
[2] South Ural State Univ, Lab Quantum Engn Light, Pr Lenina 76, Chelyabinsk 454080, Russia
关键词
non-Gaussian state; squeezed state; entanglement; Schrodinger's cat state; squeezed Schrodinger's cat state;
D O I
10.1088/1612-202X/acf921
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The paper considers the possibility of generating different non-Gaussian states using the entangled state photon measurement scheme. In the paper, we have proposed a way to explicitly find the wave function and the Wigner function of the output state of this scheme. Moreover, the solutions found are not restricted to any particular case, but have maximum generality (depend on the number of measured photons and on all parameters of the scheme). Such a notation allowed us to carry out a complete analysis of the output states, depending on the scheme parameters. Using explicit expressions, we have analyzed the magnitude of non-Gaussianity of the output states, and we have revealed which particular states can be obtained in the proposed scheme. We have considered in detail a particular case of measurement (single photon measurement) and have shown that using explicit expressions for the output state wave function one can find scheme parameters to obtain states suitable for quantum error correction codes with a large fidelity value and high probability. The Schrodinger's cat state with amplitude & alpha; = 2 can be obtained with fidelity F & AP; 0.88 and probability 18 percent, and the squeezed Schrodinger's cat state (& alpha; = 0.5, R = 1) with fidelity F & AP; 0.98 and probability 22%.
引用
收藏
页数:12
相关论文
共 31 条
  • [21] Algorithm of quantum engineering of large-amplitude high-fidelity Schrodinger cat states
    Podoshvedov, Mikhail S. S.
    Podoshvedov, Sergey A. A.
    Kulik, Sergei P. P.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [22] Quantum computation with optical coherent states
    Ralph, TC
    Gilchrist, A
    Milburn, GJ
    Munro, WJ
    Glancy, S
    [J]. PHYSICAL REVIEW A, 2003, 68 (04):
  • [23] Quantum error correction using squeezed Schrodinger cat states
    Schlegel, David S.
    Minganti, Fabrizio
    Savona, Vincenzo
    [J]. PHYSICAL REVIEW A, 2022, 106 (02)
  • [24] Sychev DV, 2017, NAT PHOTONICS, V11, P379, DOI [10.1038/nphoton.2017.57, 10.1038/NPHOTON.2017.57]
  • [25] Generation of Large-Amplitude Coherent-State Superposition via Ancilla-Assisted Photon Subtraction
    Takahashi, Hiroki
    Wakui, Kentaro
    Suzuki, Shigenari
    Takeoka, Masahiro
    Hayasaka, Kazuhiro
    Furusawa, Akira
    Sasaki, Masahide
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (23)
  • [26] Generation of optical Schrodinger cat states by generalized photon subtraction
    Takase, Kan
    Yoshikawa, Jun-ichi
    Asavanant, Warit
    Endo, Mamoru
    Furusawa, Akira
    [J]. PHYSICAL REVIEW A, 2021, 103 (01)
  • [27] Engineering Schrodinger cat states with a photonic even parity detector
    Thekkadath, G. S.
    Bell, B. A.
    Walmsley, I. A.
    Lvovsky, A., I
    [J]. QUANTUM, 2020, 4
  • [28] Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong-Ou-Mandel effect
    Ulanov, Alexander E.
    Fedorov, Ilya A.
    Sychev, Demid
    Grangier, Philippe
    Lvovsky, A. I.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [29] Detecting genuine multipartite continuous-variable entanglement
    van Loock, P
    Furusawa, A
    [J]. PHYSICAL REVIEW A, 2003, 67 (05): : 13
  • [30] Teleportation protocols with non-Gaussian operations: Conditional photon subtraction versus cubic phase gate
    Zinatullin, E. R.
    Korolev, S. B.
    Golubeva, T. Yu.
    [J]. PHYSICAL REVIEW A, 2023, 107 (02)