An Improved Central Limit Theorem and Fast Convergence Rates for Entropic Transportation Costs

被引:17
作者
del Barrio, Eustasio [1 ]
Sanz, Alberto Gonzalez [2 ]
Loubes, Jean-Michel [2 ]
Niles-Weed, Jonathan [3 ,4 ]
机构
[1] Univ Valladolid, IMUVA, Valladolid, Spain
[2] Univ Toulouse, IMT, Toulouse, France
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[4] NYU, Ctr Data Sci, New York, NY 10012 USA
来源
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE | 2023年 / 5卷 / 03期
基金
美国国家科学基金会;
关键词
optimal transport; entropic regularization; central limit theorem; Sinkhorn divergence; REGULARIZED OPTIMAL TRANSPORT; MATCHING ESTIMATORS; ASYMPTOTICS; INFERENCE; SPACES; RANKS; TESTS;
D O I
10.1137/22M149260X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a central limit theorem for the entropic transportation cost between subgaussian probability measures, centered at the population cost. This is the first result which allows for asymptotically valid inference for entropic optimal transport between measures which are not necessarily discrete. In the compactly supported case, we complement these results with new, faster, convergence rates for the expected entropic transportation cost between empirical measures. Our proof is based on strengthening convergence results for dual solutions to the entropic optimal transport problem.
引用
收藏
页码:639 / 669
页数:31
相关论文
共 79 条
[21]  
Del Barrio E., 2019, PR MACH LEARN RES
[22]  
del Barrio E, 2020, Arxiv, DOI arXiv:2006.05199
[23]  
del Barrio E, 2021, Arxiv, DOI arXiv:2102.06379
[24]   A central limit theorem for Lp transportation cost on the real line with application to fairness assessment in machine learning [J].
del Barrio, Eustasio ;
Gordaliza, Paula ;
Loubes, Jean-Michel .
INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (04) :817-849
[25]   CENTRAL LIMIT THEOREMS FOR EMPIRICAL TRANSPORTATION COST IN GENERAL DIMENSION [J].
del Barrio, Eustasio ;
Loubes, Jean-Michel .
ANNALS OF PROBABILITY, 2019, 47 (02) :926-951
[26]  
DELALANDE A., 2021, INT C ART INT STAT
[27]  
Eckstein S, 2022, Arxiv, DOI arXiv:2110.06798
[28]  
Feydy Jean, 2019, PR MACH LEARN RES, V89
[29]  
Flamary R, 2021, J MACH LEARN RES, V22
[30]   Wasserstein discriminant analysis [J].
Flamary, Remi ;
Cuturi, Marco ;
Courty, Nicolas ;
Rakotomamonjy, Alain .
MACHINE LEARNING, 2018, 107 (12) :1923-1945