Cesaro-type operators associated with Borel measures on the unit disc acting on some Hilbert spaces of analytic functions

被引:15
作者
Galanopoulos, Petros [1 ]
Girela, Daniel [2 ]
Merchan, Noel [3 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
[2] Univ Malaga, Anal Matemat, Campus Teatinos, E-29071 Malaga, Spain
[3] Univ Malaga, Dept Matemat Aplicada, Campus Teatinos, E-29071 Malaga, Spain
关键词
Hardy spaces; Weighted Bergman spaces; Mean Lipschitz spaces; Cesaro-type operators; Hilbert-Schmidt operators; MULTIPLIERS; THEOREM; MATRIX; NORM;
D O I
10.1016/j.jmaa.2023.127287
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a complex Borel measure mu on the unit disc D={z. C:|z| < 1}, we consider the Cesaro-type operator C mu defined on the space Hol(D) of all analytic functions in Das follows: If f. Hol(D), f(z) = 8 n=0anzn(z. D), then C mu(f)(z) = 8 n=0 mu n nk= 0ak zn, (z. D), where, for n = 0, mu ndenotes the n-th moment of the measure mu, that is, mu n= Dwnd mu(w). We study the action of the operators C mu on some Hilbert spaces of analytic function in D, namely, the Hardy space H2and the weighted Bergman spaces A2a( a >-1). Among other results, we prove that, if we set F mu(z) = 8 n=0 mu nzn(z. D), then C mu is bounded on H2or on A2aif and only if F mu belongs to the mean Lipschitz space.21/2. We prove also that C mu is a Hilbert-Schmidt operator on H2if and only if F mu belongs to the Dirichlet space D, and that C mu is a Hilbert-Schmidt operator on A2aif and only if F mu belongs to the Dirichlet-type space D2- 1-a. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:13
相关论文
共 27 条
[1]   Cesaro averaging operators on Hardy spaces [J].
Andersen, KF .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :617-624
[2]  
ANDERSON JM, 1974, J REINE ANGEW MATH, V270, P12
[3]   Cesaro-type operators on Hardy spaces [J].
Blasco, Oscar .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (02)
[4]  
BOURDON P, 1989, LONDON MATH SOC LECT, V137, P81
[5]   SOME ANALYTIC-FUNCTIONS WHOSE BOUNDARY VALUES HAVE BOUNDED MEAN OSCILLATION [J].
CIMA, JA ;
PETERSEN, KE .
MATHEMATISCHE ZEITSCHRIFT, 1976, 147 (03) :237-247
[6]   Composition operators and the Hilbert matrix [J].
Diamantopoulos, E ;
Siskakis, AG .
STUDIA MATHEMATICA, 2000, 140 (02) :191-198
[7]   Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type [J].
Dostanic, Milutin ;
Jevtic, Miroljub ;
Vukotic, Dragan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) :2800-2815
[8]  
Duren P.L., 1970, Theory of Hp Spaces
[9]  
Duren Peter., 2004, Bergman spaces, Mathematical Surveys and Monographs, V100
[10]   COEFFICIENT MULTIPLIERS OF HP AND BP SPACES [J].
DUREN, PL ;
SHIELDS, AL .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 32 (01) :69-&