Marginalized iterative ensemble smoothers for data assimilation

被引:1
作者
Stordal, Andreas S. [1 ,2 ]
Lorentzen, Rolf J. [1 ]
Fossum, Kristian [1 ]
机构
[1] NORCE, Norwegian Res Ctr, Nygardsporten 112, N-5008 Bergen, Norway
[2] Univ Bergen, Dept Math, POB 7803, N-5020 Bergen, Norway
关键词
Measurement uncertainty; Ensemble methods; Bayesian inversion; Data assimilation; History matching; Hierarchical models; ERROR; DIAGNOSIS;
D O I
10.1007/s10596-023-10242-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data assimilation is an important tool in many geophysical applications. One of many key elements of data assimilation algorithms is the measurement error that determines the weighting of the data in the cost function to be minimized. Although the algorithms used for data assimilation treat the measurement uncertainty as known, it is in many cases estimated or set based on some expert opinion. Here we treat the measurement uncertainty as a hyperparameter in a fully Bayesian hierarchical model and derive a new class of iterative ensemble methods for data assimilation where the measurement uncertainty is integrated out. The proposed algorithms are compared with the standard iterative ensemble smoother on a 2D synthetic reservoir model.
引用
收藏
页码:975 / 986
页数:12
相关论文
共 50 条
  • [41] Iterative multilevel assimilation of inverted seismic data
    Nezhadali, Mohammad
    Bhakta, Tuhin
    Fossum, Kristian
    Mannseth, Trond
    COMPUTATIONAL GEOSCIENCES, 2022, 26 (02) : 241 - 262
  • [42] Approximate iterative methods for variational data assimilation
    Lawless, AS
    Gratton, S
    Nichols, NK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 47 (10-11) : 1129 - 1135
  • [43] Geophysical and Production Data History Matching Based on Ensemble Smoother with Multiple Data Assimilation
    Wang, Zelong
    Liu, Xiangui
    Tang, Haifa
    Lv, Zhikai
    Liu, Qunming
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 123 (02): : 873 - 893
  • [44] Adaptive ensemble optimal interpolation for efficient data assimilation in the red sea
    Toye, Habib
    Zhan, Peng
    Sana, Furrukh
    Sanikommu, Sivareddy
    Raboudi, Naila
    Hoteit, Ibrahim
    JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 51
  • [45] Adaptive ensemble optimal interpolation for efficient data assimilation in the red sea
    Toye, Habib
    Zhan, Peng
    Sana, Furrukh
    Sanikommu, Sivareddy
    Raboudi, Naila
    Hoteit, Ibrahim
    JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 51
  • [47] Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter
    Anderson, Jeffrey L.
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) : 99 - 111
  • [48] Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing
    Habib Toye
    Peng Zhan
    Ganesh Gopalakrishnan
    Aditya R. Kartadikaria
    Huang Huang
    Omar Knio
    Ibrahim Hoteit
    Ocean Dynamics, 2017, 67 : 915 - 933
  • [49] Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing
    Toye, Habib
    Zhan, Peng
    Gopalakrishnan, Ganesh
    Kartadikaria, Aditya R.
    Huang, Huang
    Knio, Omar
    Hoteit, Ibrahim
    OCEAN DYNAMICS, 2017, 67 (07) : 915 - 933
  • [50] Sensitivity of regional ensemble data assimilation spread to perturbations of lateral boundary conditions
    El Ouaraini, Rachida
    Berre, Loik
    Fischer, Claude
    Sayouty, El Hassan
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2015, 67