Marginalized iterative ensemble smoothers for data assimilation

被引:1
|
作者
Stordal, Andreas S. [1 ,2 ]
Lorentzen, Rolf J. [1 ]
Fossum, Kristian [1 ]
机构
[1] NORCE, Norwegian Res Ctr, Nygardsporten 112, N-5008 Bergen, Norway
[2] Univ Bergen, Dept Math, POB 7803, N-5020 Bergen, Norway
关键词
Measurement uncertainty; Ensemble methods; Bayesian inversion; Data assimilation; History matching; Hierarchical models; ERROR; DIAGNOSIS;
D O I
10.1007/s10596-023-10242-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data assimilation is an important tool in many geophysical applications. One of many key elements of data assimilation algorithms is the measurement error that determines the weighting of the data in the cost function to be minimized. Although the algorithms used for data assimilation treat the measurement uncertainty as known, it is in many cases estimated or set based on some expert opinion. Here we treat the measurement uncertainty as a hyperparameter in a fully Bayesian hierarchical model and derive a new class of iterative ensemble methods for data assimilation where the measurement uncertainty is integrated out. The proposed algorithms are compared with the standard iterative ensemble smoother on a 2D synthetic reservoir model.
引用
收藏
页码:975 / 986
页数:12
相关论文
共 50 条
  • [21] Data assimilation with soft constraints (DASC) through a generalized iterative ensemble smoother
    Xiaodong Luo
    William C. Cruz
    Computational Geosciences, 2022, 26 : 571 - 594
  • [22] Optimising assimilation of hydrographic profiles into isopycnal ocean models with ensemble data assimilation
    Wang, Yiguo
    Counillon, Francois
    Bethke, Ingo
    Keenlyside, Noel
    Bocquet, Marc
    Shen, Mao-lin
    OCEAN MODELLING, 2017, 114 : 33 - 44
  • [23] Conditioning reservoir models on rate data using ensemble smoothers
    Geir Evensen
    Kjersti Solberg Eikrem
    Computational Geosciences, 2018, 22 : 1251 - 1270
  • [24] Dynamical interpolation of surface ocean chlorophyll fields via data assimilation with an iterative ensemble smoother
    Smith, K. W.
    McGillicuddy, D. J., Jr.
    JOURNAL OF MARINE SYSTEMS, 2011, 85 (3-4) : 96 - 105
  • [25] Analog ensemble data assimilation in a quasigeostrophic coupled model
    Grooms, Ian
    Renaud, Camille
    Stanley, Zofia
    Yang, L. Minah
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2023, 149 (752) : 1018 - 1037
  • [26] Ensemble data assimilation for hyperbolic systems
    Gonzalez-Tokman, Cecilia
    Hunt, Brian R.
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 243 (01) : 128 - 142
  • [27] Ensemble Perturbations for Chemical Data Assimilation
    Silver, Jeremy D.
    Brandt, Jorgen
    Christensen, Jesper H.
    Kahnert, Michael
    Robertson, Lennart
    AIR POLLUTION MODELING AND ITS APPLICATION XXII, 2014, : 221 - 224
  • [28] ITERATIVE ALGORITHMS FOR DATA ASSIMILATION PROBLEMS
    G.MARCHUK
    V.SHUTYAEV
    Chinese Annals of Mathematics, 2002, (02) : 227 - 234
  • [29] Ensemble smoother with multiple data assimilation
    Emerick, Alexandre A.
    Reynolds, Albert C.
    COMPUTERS & GEOSCIENCES, 2013, 55 : 3 - 15
  • [30] Iterative algorithms for data assimilation problems
    Marchuk, G
    Shutyaev, V
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2002, 23 (02) : 227 - 234