Solvent engineering for the formation of high-quality perovskite films: a review

被引:41
作者
Jiao, Jieming [1 ,2 ]
Yang, Chenguang [1 ]
Wang, Zhen [1 ,2 ]
Yan, Chang [1 ]
Fang, Changqing [1 ,2 ]
机构
[1] Xian Univ Technol, Sch Mech & Precis Instrument Engn, Xian 710048, Peoples R China
[2] Xian Univ Technol, Fac Printing Packaging Engn & Digital Media Techno, Xian 710048, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Perovskite; Solvent engineering; Intermediate; Precursor solution; SOLAR-CELLS; HIGH-PERFORMANCE; CH3NH3PBI3; PEROVSKITE; HALIDE PEROVSKITE; CONVERSION EFFICIENCY; SPRAY DEPOSITION; GRAIN-GROWTH; THIN-FILM; HYBRID; EVOLUTION;
D O I
10.1016/j.rineng.2023.101158
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Organic-inorganic hybrid perovskite solar cells have made tremendous breakthroughs in device photovoltaic performance, but the solution chemistry features are poorly understood. Herein, the fundamental processes of perovskite crystal crystallization and several templates for crystal growth are described. Then the solvent systems for preparing perovskite thin films are introduced, including pure, binary, and ternary solvents. The interaction of precursor ligand molecules in solution, which is related to the nature of the intermediate phase, is dependent on distinct ligand molecules, including dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), acetonitrile (ACN), urea, etc. The polarity of the solvent determines the degree of binding to Pb2+ and the stability of the complex, which affects the quality of the perovskite films. In solvent engineering research field, strong polar solvents will interact with Pb2+, which leads to the extensive study of perovskite intermediate phases. In this review, several typical intermediate phases are summarized as solvent-induced intermediates, HI intermediates, MA intermediates and MAAc intermediates. The intermediate phases are annealed or antisolvent treated to further form perovskite films, resulting in perovskite films with low defects, high-quality and few pinholes. On this basis, we propose the use of green solvents instead of toxic solvents for the preparation of perovskite thin films by multi-solvent systems, which provides some feasible ideas for further realization of high-performance perovskite solar cells with long-term device stability. Overall, this review seeks to provide a comprehensive and detailed analysis of the most recent advancements in solvent engineering for perovskite film formation, emphasizing its potential to improve the performance and stability of PSCs. In addition, it offers insights into the mechanisms underlying solvent engineering and its influence on film morphology and crystallization.
引用
收藏
页数:14
相关论文
共 111 条
[1]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[2]   Influence of Bubbles on the Energy Conversion Efficiency of Electrochemical Reactors [J].
Angulo, Andrea ;
van der Linde, Peter ;
Gardeniers, Han ;
Modestino, Miguel ;
Rivas, David Fernandez .
JOULE, 2020, 4 (03) :555-579
[3]   Interstitial Mn2+-Driven High-Aspect-Ratio Grain Growth for Low-Trap-Density Microcrystalline Films for Record Efficiency CsPbl2Br Solar Cells [J].
Bai, Dongliang ;
Zhang, Jingru ;
Jin, Zhiwen ;
Bian, Hui ;
Wang, Kang ;
Wang, Haoran ;
Liang, Lei ;
Wang, Qian ;
Liu, Shengzhong Frank .
ACS ENERGY LETTERS, 2018, 3 (04) :970-+
[4]   Nanomaterials for Environmental Applications [J].
Beni, Ali Aghababai ;
Jabbari, Hadi .
RESULTS IN ENGINEERING, 2022, 15
[5]   Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers [J].
Bi, Enbing ;
Tang, Wentao ;
Chen, Han ;
Wang, Yanbo ;
Barbaud, Julien ;
Wu, Tianhao ;
Kong, Weiyu ;
Tu, Peng ;
Zhu, Hong ;
Zeng, Xiaoqin ;
He, Jinjin ;
Kan, Shin-ichi ;
Yang, Xudong ;
Graetzel, Michael ;
Han, Liyuan .
JOULE, 2019, 3 (11) :2748-2760
[6]   Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules [J].
Bu, Tongle ;
Li, Jing ;
Li, Hengyi ;
Tian, Congcong ;
Su, Jie ;
Tong, Guoqing ;
Ono, Luis K. ;
Wang, Chao ;
Lin, Zhipeng ;
Chai, Nianyao ;
Zhang, Xiao-Li ;
Chang, Jingjing ;
Lu, Jianfeng ;
Zhong, Jie ;
Huang, Wenchao ;
Qi, Yabing ;
Cheng, Yi-Bing ;
Huang, Fuzhi .
SCIENCE, 2021, 372 (6548) :1327-+
[7]   Solvent engineering of spin-coating solutions for planar-structured high-efficiency perovskite solar cells [J].
Cai, Bing ;
Zhang, Wen-Hua ;
Qiu, Jieshan .
CHINESE JOURNAL OF CATALYSIS, 2015, 36 (08) :1183-1190
[8]   Fabrication of Perovskite Films with Large Columnar Grains via Solvent-Mediated Ostwald Ripening for Efficient Inverted Perovskite Solar Cells [J].
Cao, Xiaobing ;
Zhi, Lili ;
Li, Yahui ;
Fang, Fei ;
Cui, Xian ;
Ci, Lijie ;
Ding, Kongxian ;
Wei, Jinquan .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (02) :868-875
[9]   Sintering and Nanostability: The Thermodynamic Perspective [J].
Castro, Ricardo H. R. ;
Gouvea, Douglas .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (04) :1105-1121
[10]   Room-Temperature Molten Salt for Facile Fabrication of Efficient and Stable Perovskite Solar Cells in Ambient Air [J].
Chao, Lingfeng ;
Xia, Yingdong ;
Li, Bixin ;
Xing, Guichuan ;
Chen, Yonghua ;
Huang, Wei .
CHEM, 2019, 5 (04) :995-1006