Modeling Microsegregation during Metal Additive Manufacturing: Impact of Dendrite Tip Kinetics and Finite Solute Diffusion

被引:9
作者
Hariharan, V. S. [1 ]
Nithin, Baler [2 ]
Ruban Raj, L. [1 ]
Makineni, Surendra Kumar [2 ]
Murty, B. S. [1 ,3 ]
Phanikumar, Gandham [1 ]
机构
[1] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, India
[2] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, India
[3] Indian Inst Technol Hyderabad, Dept Mat Sci & Met Engn, Kandi 502284, India
关键词
additive manufacturing; microsegregation; solidification; MICROSTRUCTURE; SOLIDIFICATION; SUPERALLOY; SIMULATION;
D O I
10.3390/cryst13050842
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Rapid solidification during metal additive manufacturing (AM) leads to non-equilibrium microsegregation, which can result in the formation of detrimental phases and cracking. Most of the microsegregation models assume a Scheil-type solidification, where the solidification interface is planar and there exists a local equilibrium at the interface along with either zero or infinite solute diffusion in the respective participating phases-solid and liquid. This assumption leads to errors in prediction. One has to account for finite solute diffusion and the curvature at the dendritic tip for more accurate predictions. In this work, we compare different microsegregation models, that do and do not consider finite diffusion and dendrite tip kinetics, against experiments. We also propose a method to couple dendrite tip kinetics with the diffusion module (DICTRA((R))) implemented in Thermo-Calc((R)). The models which accounted for both finite diffusion and dendrite tip kinetics matched well with the experimental data.
引用
收藏
页数:18
相关论文
共 42 条
[1]   High-Throughput Experiment and Numerical Simulation to Study Solidification Cracking in 2195 Aluminum Alloy Welds [J].
Agilan, M. ;
Satyamshreshta, K. ;
Sivakumar, D. ;
Phanikumar, G. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2022, 53 (05) :1906-1918
[2]  
[Anonymous], 2022, ACCESS EV MICRESS 71
[3]  
[Anonymous], 2022, Siemens Digital Industries Software.
[4]   CONTINUOUS GROWTH-MODEL FOR INTERFACE MOTION DURING ALLOY SOLIDIFICATION [J].
AZIZ, MJ ;
KAPLAN, T .
ACTA METALLURGICA, 1988, 36 (08) :2335-2347
[5]   Additive Manufacturing of Nickel Superalloys: Opportunities for Innovation and Challenges Related to Qualification [J].
Babu, S. S. ;
Raghavan, N. ;
Raplee, J. ;
Foster, S. J. ;
Frederick, C. ;
Haines, M. ;
Dinwiddie, R. ;
Kirka, M. K. ;
Plotkowski, A. ;
Lee, Y. ;
Dehoff, R. R. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (09) :3764-3780
[6]  
BOETTINGER WJ, 1998, MODELING CASTING WEL, V8, P159
[7]   DICTRA, a tool for simulation of diffusional transformations in alloys [J].
Borgenstam, A ;
Engström, A ;
Höglund, L ;
Ågren, J .
JOURNAL OF PHASE EQUILIBRIA, 2000, 21 (03) :269-280
[8]  
Brody H.D., 1965, Ph.D. Thesis
[9]   SOLUTE REDISTRIBUTION DURING SOLIDIFICATION WITH RAPID SOLID-STATE DIFFUSION [J].
CLYNE, TW ;
KURZ, W .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1981, 12 (06) :965-971
[10]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224