Advances in the application of label-free quantitative proteomics techniques in malignancy research

被引:2
|
作者
Meng, Xiao [1 ]
Liu, Dong [1 ]
Guan, Yan [1 ]
机构
[1] Weifang Med Univ, Sch Med Lab, 7166 Baotong West St, Weifang 261053, Shandong, Peoples R China
关键词
data-independent acquisition; label free; malignant tumors; proteomics; sequential window acquisition of all theoretical mass spectra; NASOPHARYNGEAL CARCINOMA; GASTRIC-CANCER; ELECTROPHORESIS; IDENTIFICATION; PROTEINS;
D O I
10.1002/bmc.5667
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Proteomics is the scientific discipline that deals with the protein composition of cells, tissues, and organisms and their patterns of change. It is considered an invaluable tool for tackling many challenges faced in medicine and biology. Among the available approaches, label-free quantitative proteomics techniques are extensively used to study malignant tumors due to their low cost, simple operation, and short cycle time. Therefore, it provides a novel approach to explore the pathogenesis, diagnostic markers, and targeted drugs of malignant tumors. Here, we summarize the research progress and potential of label-free quantitative proteomics and discuss the application of such techniques in the research on malignancies.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Label-free Methods in Quantitative Proteomics
    Wu Peng
    He Fu-Chu
    Jiang Ying
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2013, 40 (03) : 281 - 292
  • [2] LABEL-FREE QUANTITATIVE PROTEOMICS UNRAVELS THE IMPORTANCE OF RNA PROCESSING IN GLIOMA MALIGNANCY
    Bi, Baibin
    Li, Feng
    Guo, Jisheng
    Li, Cuiling
    Jing, Ruirui
    Lv, Xin
    Chen, Xinjun
    Wang, Fengqin
    Azadzoi, Kazem M.
    Wang, Lin
    Liu, Yuguang
    Yang, Jing-Hua
    NEUROSCIENCE, 2017, 351 : 84 - 95
  • [3] Benchmarking Quantitative Performance in Label-Free Proteomics
    Dowell, James A.
    Wright, Logan J.
    Armstrong, Eric A.
    Denu, John M.
    ACS OMEGA, 2021, 6 (04): : 2494 - 2504
  • [4] Labeling and label-free quantitative proteomics in plant biology
    Gao, Fengyi
    Zhang, Wenna
    Xu, Huimin
    Liang, Xinlin
    Chen, Yanmei
    CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (31): : 3952 - 3964
  • [5] Update on the moFF Algorithm for Label-Free Quantitative Proteomics
    Argentini, Andrea
    Staes, An
    Gruening, Bjoern
    Mehta, Subina
    Easterly, Caleb
    Griffin, Timothy J.
    Jagtap, Pratik
    Impens, Francis
    Martens, Lennart
    JOURNAL OF PROTEOME RESEARCH, 2019, 18 (02) : 728 - 731
  • [6] Metaprotein expression modeling for label-free quantitative proteomics
    Lucas, Joseph E.
    Thompson, J. Will
    Dubois, Laura G.
    McCarthy, Jeanette
    Tillmann, Hans
    Thompson, Alexander
    Shire, Norah
    Hendrickson, Ron
    Dieguez, Francisco
    Goldman, Phyllis
    Schwarz, Kathleen
    Patel, Keyur
    McHutchison, John
    Moseley, M. Arthur
    BMC BIOINFORMATICS, 2012, 13
  • [7] Metaprotein expression modeling for label-free quantitative proteomics
    Joseph E Lucas
    J Will Thompson
    Laura G Dubois
    Jeanette McCarthy
    Hans Tillmann
    Alexander Thompson
    Norah Shire
    Ron Hendrickson
    Francisco Dieguez
    Phyllis Goldman
    Kathleen Schwarz
    Keyur Patel
    John McHutchison
    M Arthur Moseley
    BMC Bioinformatics, 13
  • [8] Computational Advances in the Label-free Quantification of Cancer Proteomics Data
    Tang, Jing
    Zhang, Yang
    Fu, Jianbo
    Wang, Yunxia
    Li, Yi
    Yang, Qingxia
    Yao, Lixia
    Xue, Weiwei
    Zhu, Feng
    CURRENT PHARMACEUTICAL DESIGN, 2018, 24 (32) : 3842 - 3858
  • [9] SWATH label-free proteomics for cystic fibrosis research
    Braccia, Clarissa
    Tomati, Valeria
    Caci, Emanuela
    Pedemonte, Nicoletta
    Armirotti, Andrea
    JOURNAL OF CYSTIC FIBROSIS, 2019, 18 (04) : 501 - 506
  • [10] Pseudo internal standard approach for label-free quantitative proteomics
    Tabata, Tsuyoshi
    Sato, Toshitaka
    Kuromitsu, Junro
    Oda, Yoshiya
    ANALYTICAL CHEMISTRY, 2007, 79 (22) : 8440 - 8445