Verification of component-based systems with recursive architectures

被引:1
作者
Bozga, Marius [1 ]
Iosif, Radu [1 ]
Sifakis, Joseph [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, F-38000 Grenoble, France
关键词
Resource logic; Component-based distributed systems; Parameterized verification; MODEL CHECKING;
D O I
10.1016/j.tcs.2022.10.022
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study a sound verification method for parametric component-based systems. The method uses a resource logic, a new formal specification language for distributed systems consisting of a finite yet unbounded number of components. The logic allows the descrip-tion of architecture configurations coordinating instances of a finite number of types of components, by means of inductive definitions similar to the ones used to describe al-gebraic data types or recursive data structures. For parametric systems specified in this logic, we show that decision problems such as reaching deadlock or violating critical sec-tion are undecidable, in general. Despite this negative result, we provide for these decision problems practical semi-algorithms relying on the automatic synthesis of structural invari-ants allowing the proof of general safety properties. The invariants are defined using the WS kappa S fragment of the monadic second order logic, known to be decidable by a classical automata-logic connection, thus reducing a verification problem to checking satisfiability of a WS kappa S formula.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:146 / 175
页数:30
相关论文
共 34 条
[1]  
Abdulla PA, 2007, LECT NOTES COMPUT SC, V4424, P721
[2]  
Ahrens E, 2022, Arxiv, DOI arXiv:2107.05253
[3]  
[Anonymous], MATH TODAY 12 INFORM, DOI [10.1007/978-1-4613-9435-8_10, DOI 10.1007/978-1-4613-9435-8_10]
[4]  
[Anonymous], 1936, Journal of Symbolic Logic
[5]  
Barrett C.W., 2007, J. Satisfiability Boolean Model. Comput., V3, P21
[6]  
Bloem R., 2015, Synthesis Lectures on Distributed Computing Theory, DOI [10.2200/S00658ED1V01Y201508DCT013, DOI 10.2200/S00658ED1V01Y201508DCT013]
[7]   Tree-Walking Automata [J].
Bojanczyk, Mikolaj .
LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2008, 5196 :1-2
[8]  
Bozga M., LNCS, V12078, P228
[9]   Decision Problems in a Logic for Reasoning About Reconfigurable Distributed Systems [J].
Bozga, Marius ;
Bueri, Lucas ;
Iosif, Radu .
AUTOMATED REASONING, IJCAR 2022, 2022, 13385 :691-711
[10]   Specification and Safety Verification of Parametric Hierarchical Distributed Systems [J].
Bozga, Marius ;
Iosif, Radu .
FORMAL ASPECTS OF COMPONENT SOFTWARE (FACS 2021), 2021, 13077 :95-114