Light gradient boosting machine with optimized hyperparameters for identification of malicious access in IoT network

被引:26
作者
Mishra, Debasmita [1 ]
Naik, Bighnaraj [1 ]
Nayak, Janmenjoy [2 ]
Souri, Alireza [3 ]
Dash, Pandit Byomakesha [4 ]
Vimal, S. [5 ]
机构
[1] Veer Surendra Sai Univ Technol, Dept Comp Applicat, Sambalpur 768018, Orissa, India
[2] Maharaja Sriram Chandra Bhanja Deo MSCB Univ, Dept Comp Sci, Baripada 757003, Orissa, India
[3] Halic Univ, Dept Software Engn, TR-34394 Istanbul, Turkiye
[4] Aditya Inst Technol & Management AITAM, Dept Informat Technol, Tekkali 532201, Andhra Pradesh, India
[5] Ramco Inst Technol, Dept Artificial Intelligence & Data Sci, Data Analyt Lab, Rajapalayam 626117, Tamilnadu, India
关键词
IoT security; Ensemble method; Light gradient boosting machine; Machine learning; Intrusion detection; DEEP LEARNING APPROACH; FRAMEWORK; INTERNET;
D O I
10.1016/j.dcan.2022.10.004
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper, an advanced and optimized Light Gradient Boosting Machine (LGBM) technique is proposed to identify the intrusive activities in the Internet of Things (IoT) network. The followings are the major contribu-tions: i) An optimized LGBM model has been developed for the identification of malicious IoT activities in the IoT network; ii) An efficient evolutionary optimization approach has been adopted for finding the optimal set of hyper-parameters of LGBM for the projected problem. Here, a Genetic Algorithm (GA) with k-way tournament selection and uniform crossover operation is used for efficient exploration of hyper-parameter search space; iii) Finally, the performance of the proposed model is evaluated using state-of-the-art ensemble learning and machine learning-based model to achieve overall generalized performance and efficiency. Simulation outcomes reveal that the proposed approach is superior to other considered methods and proves to be a robust approach to intrusion detection in an IoT environment.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 50 条
[31]   Rapid identification of geographical origin of sea cucumbers Apostichopus japonicus using FT-NIR coupled with light gradient boosting machine [J].
Sun, Yong ;
Liu, Nan ;
Kang, Xuming ;
Zhao, Yanfang ;
Cao, Rong ;
Ning, Jinsong ;
Ding, Haiyan ;
Sheng, Xiaofeng ;
Zhou, Deqing .
FOOD CONTROL, 2021, 124
[32]   Intelligent quotient estimation from MRI images using optimal light gradient boosting machine [J].
P. Thilakavathy ;
B. Diwan .
The Journal of Supercomputing, 2023, 79 :2431-2450
[33]   Application of light gradient boosting machine in mine water inrush source type online discriminant [J].
Yang Yong ;
Li Jing ;
Zhang Jing ;
Liu Yang ;
Zhao Li ;
Guo Ruxue .
INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2021, 24 (01) :9-17
[34]   Solar Flare Prediction and Feature Selection Using a Light-Gradient-Boosting Machine Algorithm [J].
Vysakh, P. A. ;
Mayank, Prateek .
SOLAR PHYSICS, 2023, 298 (11)
[35]   Coal Rock Condition Detection Model Using Acoustic Emission and Light Gradient Boosting Machine [J].
Li, Jing ;
Yang, Yong ;
Ge, Hongmei ;
Zhao, Li ;
Gue, Ruxue .
CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 63 (01) :151-162
[36]   Intelligent quotient estimation from MRI images using optimal light gradient boosting machine [J].
Thilakavathy, P. ;
Diwan, B. .
JOURNAL OF SUPERCOMPUTING, 2023, 79 (03) :2431-2450
[37]   A model combining Optuna and the light gradient-boosting machine algorithm for credit default forecasting [J].
Lu, Xinyong ;
Li, Yuchong ;
Wei, Haoyan ;
Wang, Jiaxin ;
Liu, Xuewei ;
Wei, Jiahui .
JOURNAL OF RISK MODEL VALIDATION, 2024, 18 (03) :1-25
[38]   Prediction of Extubation Failure for Intensive Care Unit Patients Using Light Gradient Boosting Machine [J].
Chen, Tingting ;
Xu, Jun ;
Ying, Haochao ;
Chen, Xiaojun ;
Feng, Ruiwei ;
Fang, Xueling ;
Gao, Honghao ;
Wu, Jian .
IEEE ACCESS, 2019, 7 :150960-150968
[39]   Forecasting carbon price trends based on an interpretable light gradient boosting machine and Bayesian optimization [J].
Deng, Shangkun ;
Su, Jiankang ;
Zhu, Yingke ;
Yu, Yiting ;
Xiao, Chongyi .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
[40]   Forecasting Hydrogen Vehicle Refuelling for Sustainable Transportation: A Light Gradient-Boosting Machine Model [J].
Isaac, Nithin ;
Saha, Akshay K. .
SUSTAINABILITY, 2024, 16 (10)