2D characterisation and evaluation of multi-material structures towards 3D hybrid printing

被引:3
作者
Cicek, Umur I. [1 ,2 ]
Southee, Darren J. [1 ]
Johnson, Andrew A. [1 ]
机构
[1] Loughborough Univ, Sch Design & Creat Arts, Loughborough, England
[2] Loughborough Univ, Design Sch, Loughborough LE11 3TU, England
关键词
Material extrusion; multi-material manufacturing; hybrid manufacturing; printed electronics; conductive silver films; ELECTRICAL PERFORMANCE; ELECTRONIC COMPONENTS; FABRICATION; STEREOLITHOGRAPHY; RELIABILITY; FILAMENT;
D O I
10.1080/17452759.2023.2181193
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multi-material manufacturing through the hybridisation of printed electronics and additive manufacturing has gained great interest recently. However, such hybridisation attempts are not trivial due to the need for functional material development and compatible process identification, as well as further performance understanding, comprehensive characterisation and long-term reliability evaluation of multi-material parts. While some multi-material structures from functional materials such as silver inks have been demonstrated via the integration of direct writing systems into stereolithography or material extrusion platforms, the performance assessment and characterisation of parts manufactured using such integrated systems is still required. Therefore, this research presents a comprehensive assessment of multi-material structures manufactured using syringe deposition and material extrusion platforms. Test specimens were subjected to various characterisation activities such as thickness measurement, resistance measurement, roughness tests, wettability measurement, adhesion tests, and morphological analysis. Results and statistical analyses suggested that the dry thickness and conductivity of deposited films were dependent on the substrate material. Adhesion between the conductive film and substrate was affected by both substrate material and ink deposition angle. Also, the interaction of conductive films with polycarbonate substrate was found to be noticeably better among all substrates due to low resistivity and enhanced adhesion at low thicknesses.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A review on polyjet 3D printing of polymers and multi-material structures
    Patpatiya, Parth
    Chaudhary, Kailash
    Shastri, Anshuman
    Sharma, Shailly
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022, 236 (14) : 7899 - 7926
  • [2] Multi-Material 3D and 4D Printing: A Survey
    Rafiee, Mohammad
    Farahani, Rouhollah D.
    Therriault, Daniel
    ADVANCED SCIENCE, 2020, 7 (12)
  • [3] Development of a Multi-Material Stereolithography 3D Printing Device
    Khatri, Bilal
    Frey, Marco
    Raouf-Fahmy, Ahmed
    Scharla, Marc-Vincent
    Hanemann, Thomas
    MICROMACHINES, 2020, 11 (05)
  • [4] Embedded 3D printing of microstructured multi-material composites
    Zhou, Shitong
    Tirichenko, Iuliia S.
    Zhang, Xun
    Hong, Yinglun
    Payne, Harry
    Withers, Philip J.
    Bouville, Florian
    Saiz, Eduardo
    MATTER, 2024, 7 (02) : 668 - 684
  • [5] MultiFab: A Machine Vision Assisted Platform for Multi-material 3D Printing
    Sitthi-Amorn, Pitchaya
    Ramos, Javier E.
    Wang, Yuwang
    Kwan, Joyce
    Lan, Justin
    Wang, Wenshou
    Matusik, Wojciech
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):
  • [6] Omnidirectional and Multi-Material In Situ 3D Printing Using Acoustic Levitation
    Chen, Hongyi
    Bansal, Shubhi
    Plasencia, Diego Martinez
    Di-Silvio, Lucy
    Huang, Jie
    Subramanian, Sriram
    Hirayama, Ryuji
    ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [7] Recent Advances in Multi-Material 3D Printing of Functional Ceramic Devices
    Chen, Hui
    Guo, Liang
    Zhu, Wenbo
    Li, Chunlai
    POLYMERS, 2022, 14 (21)
  • [8] Recent Advances on 2D Materials towards 3D Printing
    Gomez, I. Jennifer
    Alegret, Nuria
    Dominguez-Alfaro, Antonio
    Vazquez Sulleiro, Manuel
    CHEMISTRY-SWITZERLAND, 2021, 3 (04): : 1314 - 1343
  • [9] Multi-Material 3D Microprinting of Magnetically Deformable Biocompatible Structures
    Petrot, Roxane
    Devillers, Thibaut
    Stephan, Olivier
    Cugat, Orphee
    Tomba, Caterina
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (49)
  • [10] Multi-material ceramic material extrusion 3D printing with granulated injection molding feedstocks
    Wick-Joliat, Rene
    Schroffenegger, Martina
    Penner, Dirk
    CERAMICS INTERNATIONAL, 2023, 49 (04) : 6361 - 6367