Inexact proximal point algorithm for quasiconvex optimization problems on Hadamard manifolds

被引:2
作者
Azami, Shahroud [1 ]
Barani, Ali [2 ]
Oveisiha, Morteza [1 ]
机构
[1] Imam Khomeini Int Univ, Dept Pure Math, Fac Sci, Qazvin, Iran
[2] Lorestan Univ, Dept Math, Fac Sci, Khorramabad, Iran
关键词
Proximal point methods; quasiconvex function; Hadamard manifolds; multiobjective optimization; Pareto optimality; LOCALLY LIPSCHITZ FUNCTIONS; MONOTONE VECTOR-FIELDS; MULTIOBJECTIVE OPTIMIZATION; BREGMAN DISTANCES; CONVERGENCE;
D O I
10.1080/02331934.2022.2094794
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, by using the inexact scalarization proximal methods, we solve quasiconvex multiobjective optimization problems on Hadamard manifolds. Under some assumptions on the multifunction of problem and vector fields, our methods are proved to be convergent to a Pareto critical point of the problem. For the convex case, the sequences generated by the methods converge to a weak Pareto solution.
引用
收藏
页码:89 / 112
页数:24
相关论文
共 43 条
[1]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[2]   Newton's method on Riemannian manifolds and a geometric model for the human spine [J].
Adler, RL ;
Dedieu, JP ;
Margulies, JY ;
Martens, M ;
Shub, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (03) :359-390
[3]   RIEMANNIAN Lp CENTER OF MASS: EXISTENCE, UNIQUENESS, AND CONVEXITY [J].
Afsari, Bijan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (02) :655-673
[4]  
Ansari QH, 2020, J NONLINEAR CONVEX A, V21, P2417
[5]   A scalarization proximal point method for quasiconvex multiobjective minimization [J].
Apolinario, H. C. F. ;
Quiroz, E. A. Papa ;
Oliveira, P. R. .
JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (01) :79-96
[6]   On the metric projection onto φ-convex subsets of Hadamard manifolds [J].
Barani, A. ;
Hosseini, S. ;
Pouryayevali, M. R. .
REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02) :815-826
[7]   An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds [J].
Bento, G. C. ;
da Cruz Neto, J. X. ;
Santos, P. S. M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (01) :108-124
[8]   Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds [J].
Bento, G. C. ;
Ferreira, O. P. ;
Oliveira, P. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :564-572
[9]   Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization of Hadamard Manifolds [J].
Bento, Glaydston de C. ;
da Cruz Neto, Joao Xavier ;
de Meireles, Lucas V. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 179 (01) :37-52
[10]  
Clarke F., 1998, Graduate Texts in Mathematics