Functional subtypes of synaptic dynamics in mouse and human

被引:4
作者
Beninger, John [1 ,2 ,3 ]
Rossbroich, Julian [4 ,5 ]
Toth, Katalin [1 ,2 ,3 ]
Naud, Richard [1 ,2 ,3 ,6 ]
机构
[1] Univ Ottawa, Ctr Neural Dynam & Artificial Intelligence, Ottawa, ON K1H 8M5, Canada
[2] Univ Ottawa, uOttawa Brain & Mind Res Inst, Ottawa, ON K1H 8M5, Canada
[3] Univ Ottawa, Dept Cellular & Mol Med, Ottawa, ON K1H 8M5, Canada
[4] Friedrich Miescher Inst Biomed Res, Basel, Switzerland
[5] Univ Basel, Fac Sci, Basel, Switzerland
[6] Univ Ottawa, Dept Phys, Ottawa, ON K1H 8M5, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
SHORT-TERM PLASTICITY; NEURAL-NETWORKS; TEMPORAL INFORMATION; TRANSMITTER RELEASE; MOSSY FIBER; LAYER; 2/3; FACILITATION; DEPRESSION; CELLS; SYNAPSES;
D O I
10.1016/j.celrep.2024.113785
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Synapses preferentially respond to particular temporal patterns of activity with a large degree of heterogeneity that is informally or tacitly separated into classes. Yet, the precise number and properties of such classes are unclear. Do they exist on a continuum and, if so, when is it appropriate to divide that continuum into functional regions? In a large dataset of glutamatergic cortical connections, we perform model -based characterization to infer the number and characteristics of functionally distinct subtypes of synaptic dynamics. In rodent data, we find five clusters that partially converge with transgenic-associated subtypes. Strikingly, the application of the same clustering method in human data infers a highly similar number of clusters, supportive of stable clustering. This nuanced dictionary of functional subtypes shapes the heterogeneity of cortical synaptic dynamics and provides a lens into the basic motifs of information transmission in the brain.
引用
收藏
页数:17
相关论文
共 69 条
[1]  
Abbott LF, 1997, SCIENCE, V275, P220, DOI 10.1126/science.275.5297.221
[2]   Neural population dynamics of computing with synaptic modulations [J].
Aitken, Kyle ;
Mihalas, Stefan .
ELIFE, 2023, 12
[3]  
Ankerst M, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P49
[4]   Persistent activity in neural networks with dynamic synapses [J].
Barak, Omri ;
Tsodyks, Misha .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (02) :323-332
[5]   Synaptic basis of a sub-second representation of time in a neural circuit model [J].
Barri, A. ;
Wiechert, M. T. ;
Jazayeri, M. ;
DiGregorio, D. A. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   A transcriptomic axis predicts state modulation of cortical interneurons [J].
Bugeon, Stephane ;
Duffield, Joshua ;
Dipoppa, Mario ;
Ritoux, Anne ;
Prankerd, Isabelle ;
Nicoloutsopoulos, Dimitris ;
Orme, David ;
Shinn, Maxwell ;
Peng, Han ;
Forrest, Hamish ;
Viduolyte, Aiste ;
Reddy, Charu Bai ;
Isogai, Yoh ;
Carandini, Matteo ;
Harris, Kenneth D. .
NATURE, 2022, 607 (7918) :330-+
[7]   TEMPORAL INFORMATION TRANSFORMED INTO A SPATIAL CODE BY A NEURAL-NETWORK WITH REALISTIC PROPERTIES [J].
BUONOMANO, DV ;
MERZENICH, MM .
SCIENCE, 1995, 267 (5200) :1028-1030
[8]   Model-Based Inference of Synaptic Transmission [J].
Bykowska, Ola ;
Gontier, Camille ;
Sax, Anne-Lene ;
Jia, David W. ;
Montero, Milton Llera ;
Bird, Alex D. ;
Houghton, Conor ;
Pfister, Jean-Pascal ;
Costa, Rui Ponte .
FRONTIERS IN SYNAPTIC NEUROSCIENCE, 2019, 11
[9]   Local connectivity and synaptic dynamics in mouse and human neocortex [J].
Campagnola, Luke ;
Seeman, Stephanie C. ;
Chartrand, Thomas ;
Kim, Lisa ;
Hoggarth, Alex ;
Gamlin, Clare ;
Ito, Shinya ;
Trinh, Jessica ;
Davoudian, Pasha ;
Radaelli, Cristina ;
Kim, Mean-Hwan ;
Hage, Travis ;
Braun, Thomas ;
Alfiler, Lauren ;
Andrade, Julia ;
Bohn, Phillip ;
Dalley, Rachel ;
Henry, Alex ;
Kebede, Sara ;
Alice, Mukora ;
Sandman, David ;
Williams, Grace ;
Larsen, Rachael ;
Teeter, Corinne ;
Daigle, Tanya L. ;
Berry, Kyla ;
Dotson, Nadia ;
Enstrom, Rachel ;
Gorham, Melissa ;
Hupp, Madie ;
Lee, Samuel Dingman ;
Ngo, Kiet ;
Nicovich, Philip R. ;
Potekhina, Lydia ;
Ransford, Shea ;
Gary, Amanda ;
Goldy, Jeff ;
McMillen, Delissa ;
Trangthanh Pham ;
Tieu, Michael ;
Siverts, La'Akea ;
Walker, Miranda ;
Farrell, Colin ;
Schroedter, Martin ;
Slaughterbeck, Cliff ;
Cobb, Charles ;
Ellenbogen, Richard ;
Gwinn, Ryder P. ;
Keene, C. Dirk ;
Ko, Andrew L. .
SCIENCE, 2022, 375 (6585) :1144-+
[10]   A novel learning rule for long-term plasticity of short-term synaptic plasticity enhances temporal processing [J].
Carvalho, Tiago P. ;
Buonomano, Dean V. .
FRONTIERS IN INTEGRATIVE NEUROSCIENCE, 2011, 5