GLOBAL EXISTENCE AND GENERAL DECAY OF SOLUTION FOR A NONLINEAR WAVE EQUATION WITH VARIABLE EXPONENTS AND MEMORY TERM

被引:0
作者
Boughamsa, Wissem [1 ]
Ouaoua, Amar [1 ]
机构
[1] Univ 20 August 1955, LAMAHIS Lab, Skikda, Algeria
来源
MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS | 2023年 / 89卷
关键词
Wave equation; variable exponents; memory term; global existence; general decay; BLOW-UP; ASYMPTOTIC STABILITY; PARABOLIC EQUATION; SOBOLEV EMBEDDINGS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following wave equation: u(tt) -Delta u - Delta u(tt) + (0)integral(t) g(t-s)Delta u(s)ds + |u(t) |(m(x)-2) u(t) = b |u|(p(x)-2) u. First, we prove that the equation has a unique local solution for a suitable conditions by using Faedo-Galerkin methods, and we also prove that the local solution is global in time. Finally, we demonstrate that the solution with positive initial energy decays exponentially.
引用
收藏
页码:61 / 78
页数:18
相关论文
共 25 条
[1]   Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain [J].
Aassila, M ;
Cavalcanti, MM ;
Soriano, JA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (05) :1581-1602
[2]  
Antontsev S, 2005, ADV DIFFERENTIAL EQU, V10, P1053
[4]  
Berrimi S, 2004, ELECTRON J DIFFER EQ
[5]  
Cavalcanti MM, 2002, ELECTRON J DIFFER EQ
[6]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[7]  
Edmunds DE, 2002, MATH NACHR, V246, P53, DOI 10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO
[8]  
2-T
[9]   Sobolev embeddings with variable exponent [J].
Edmunds, DE ;
Rákosník, J .
STUDIA MATHEMATICA, 2000, 143 (03) :267-293
[10]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446