Pricing Bermudan Options Using Regression Trees/Random Forests

被引:4
作者
Ech-Chafiq, Zineb El Filali [1 ,2 ]
Labordere, Pierre Henry [3 ,4 ]
Lelong, Jerome [1 ]
机构
[1] Univ Grenoble, CNRS, INP, LJK, F-38000 Grenoble, France
[2] Natixis, F-75013 Paris, France
[3] Natixis, F-75013 Paris, France
[4] CMAP, Ecole Polytech, F-91120 Palaiseau, France
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2023年 / 14卷 / 04期
关键词
regression trees; random forests; Bermudan options; optimal stopping; CONTINUOUS MAPPING-THEOREM; AMERICAN OPTIONS; SIMULATION; VALUATION;
D O I
10.1137/21M1460648
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The value of an American option is the maximized value of the discounted cash flows from the option. At each time step, one needs to compare the immediate exercise value with the continuation value and decide to exercise as soon as the exercise value is strictly greater than the continuation value. We can formulate this problem as a dynamic programming equation, where the main difficulty comes from the computation of the conditional expectations representing the continuation values at each time step. In Longstaff and Schwartz [Rev. Financ. Studies, 14 (2001), pp. 113--147], these conditional expectations were estimated using regressions on a finite-dimensional vector space (typically a polynomial basis). In this paper, we follow the same algorithm; only the conditional expectations are estimated using regression trees or random forests. We discuss the convergence of the Longstaff and Schwartz algorithm when the standard least squares regression is replaced by regression trees. Finally, we expose some numerical results with regression trees and random forests. The random forest algorithm gives excellent results in high dimensions.
引用
收藏
页码:1113 / 1139
页数:27
相关论文
共 50 条
  • [31] Statistical inference in the presence of imputed survey data through regression trees and random forests
    Dagdoug, Mehdi
    Goga, Camelia
    Haziza, David
    SCANDINAVIAN JOURNAL OF STATISTICS, 2025,
  • [32] Covariance regression with random forests
    Cansu Alakus
    Denis Larocque
    Aurélie Labbe
    BMC Bioinformatics, 24
  • [33] Small trees in supercritical random forests
    Lei, Tao
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (03): : 605 - 623
  • [34] Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
    Kohler, Michael
    Krzyzak, Adam
    Walk, Harro
    STATISTICS & RISK MODELING, 2008, 26 (04) : 275 - 288
  • [35] Design of an imputation methodology by random selection using regression trees
    Useche, Lelly
    Perez Parra, Jean
    Garcia-Mendoza, Carlos
    Ides Chacon, Ana
    BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2021, 9 (02): : 97 - 121
  • [36] Regression conformal prediction with random forests
    Johansson, Ulf
    Bostrom, Henrik
    Lofstrom, Tuve
    Linusson, Henrik
    MACHINE LEARNING, 2014, 97 (1-2) : 155 - 176
  • [37] Pricing high-dimensional American options by kernel ridge regression
    Hu, Wenbin
    Zastawniak, Tomasz
    QUANTITATIVE FINANCE, 2020, 20 (05) : 851 - 865
  • [38] Variable importance in binary regression trees and forests
    Ishwaran, Hemant
    ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 519 - 537
  • [39] Regression conformal prediction with random forests
    Ulf Johansson
    Henrik Boström
    Tuve Löfström
    Henrik Linusson
    Machine Learning, 2014, 97 : 155 - 176
  • [40] POSTERIOR CONCENTRATION FOR BAYESIAN REGRESSION TREES AND FORESTS
    Rockova, Veronika
    Van der Pas, Stephanie
    ANNALS OF STATISTICS, 2020, 48 (04) : 2108 - 2131