Exceptional thermal stability of additively manufactured CoCrFeMnNi high-entropy alloy with cellular dislocation structures

被引:16
作者
Liu, Yanfang [1 ,2 ]
Ren, Jie [2 ]
Liu, Jian [2 ]
Cao, Yang [1 ]
Liu, Wei [1 ]
Li, Tianyi [3 ]
Zhu, Yuntian [1 ,4 ]
Chen, Wen [2 ]
机构
[1] Nanjing Univ Sci & Technol, Nano & Heterogeneous Mat Ctr, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
[2] Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA
[3] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA
[4] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Hong Kong, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2023年 / 885卷
基金
美国国家科学基金会;
关键词
Additive manufacturing; High-entropy alloy; Thermal stability; Cellular dislocation structure; Precipitates; MECHANICAL-PROPERTIES; GRAIN-GROWTH; MICROSTRUCTURAL EVOLUTION; STORED ENERGY; HIGH-STRENGTH; CRMNFECONI; RECRYSTALLIZATION; DEFORMATION; DIFFUSION; DUCTILITY;
D O I
10.1016/j.msea.2023.145650
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
CoCrFeMnNi high-entropy alloy (HEA) was additively manufactured (AM) by laser powder-bed fusion (L-PBF). The AM CoCrFeMnNi has prominent cellular dislocation structures with a small number of Mn-rich oxides. The thermal stability of the AM CoCrFeMnNi was investigated by isochronal annealing treatment at various tem-peratures from 400 to 1300 degrees C for 1 h. Microstructural analysis shows slow dislocation recovery, retarded recrystallization process, and precipitation of additional Cr-Mn based oxides during thermal annealing, resulting in exceptional thermal stability and retained high hardness at elevated temperatures. By thermodynamic cal-culations, a low stored energy of 1.31 MJ/m3 and a high activation energy of 353 kJ/mol for recrystallization were estimated for the AM CoCrFeMnNi. The exceptional thermal stability of the AM CoCrFeMnNi HEA is mechanistically attributed to the low crystallographic misorientations across the dislocation cell walls, sluggish atomic diffusion, and the pinning effects of the oxide nanoprecipitates.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Toward tunable microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy
    Li, Hongge
    Fu, Wujing
    Chen, Tian
    Huang, Yongjiang
    Ning, Zhiliang
    Sun, Jianfei
    Bai, Houyi
    Dai, Xianwu
    Fan, Hongbo
    Ngan, Alfonso H. W.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 924
  • [22] Cellular structure mediated dislocation regulation in additively manufactured refractory high entropy alloy
    Liu, Changxi
    Xie, Lechun
    Zhang, Lai-Chang
    Wang, Liqiang
    MATERIALS RESEARCH LETTERS, 2024, 12 (06): : 425 - 432
  • [23] Cryogenic tensile behavior of carbon-doped CoCrFeMnNi high-entropy alloys additively manufactured by laser powder bed fusion
    Park, Haeum
    Kwon, Hyeonseok
    Kim, Kyung Tae
    Yu, Ji-Hun
    Choe, Jungho
    Sung, Hyokyung
    Kim, Hyoung Seop
    Kim, Jung Gi
    Park, Jeong Min
    ADDITIVE MANUFACTURING, 2024, 86
  • [24] In-situ formed oxide enables extraordinary high-cycle fatigue resistance in additively manufactured CoCrFeMnNi high-entropy alloy
    Kim, Young-Kyun
    Baek, Min-Seok
    Yang, Sangsun
    Lee, Kee-Ahn
    ADDITIVE MANUFACTURING, 2021, 38
  • [25] Stretch-flangeability of CoCrFeMnNi high-entropy alloy
    Choi, Yeon Taek
    Bae, Jae Wung
    Park, Jeong Min
    Lee, Hak Hyeon
    Kwon, Hyeonseok
    Son, Sujung
    Ahn, Dong-Hyun
    Kim, Hyoung Seop
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 814
  • [26] Achieving superior high-temperature strength in an additively manufactured high-entropy alloy by controlled heat treatment
    Ji, Zhiyong
    Qiu, Chunlei
    APPLIED MATERIALS TODAY, 2024, 40
  • [27] Deformation mechanisms in an additively manufactured dual-phase eutectic high-entropy alloy
    Ren, Jie
    Wu, Margaret
    Li, Chenyang
    Guan, Shuai
    Dong, Jiaqi
    Forien, Jean-Baptiste
    Li, Tianyi
    Shanks, Katherine S.
    Yu, Dunji
    Chen, Yan
    An, Ke
    Xie, Kelvin Y.
    Chen, Wei
    Voisin, Thomas
    Chen, Wen
    ACTA MATERIALIA, 2023, 257
  • [28] Homogenization heat treatment for an additively manufactured precipitation-hardening high-entropy alloy
    Liu, Zhi-Yuan
    Zhao, Xin-Yi
    Wu, Yao-Wen
    Chen, Qiang
    Yang, Bao-Hua
    Wang, Pei
    Chen, Zhang-Wei
    Yang, Can
    RARE METALS, 2022, 41 (08) : 2853 - 2863
  • [29] Deformation Behavior and Strengthening Mechanisms of an Additively Manufactured High-Entropy Alloy with Hierarchical Heterostructures
    Bai, Yunjian
    Li, Yadong
    Liu, Yizhe
    Yang, Cheng
    Wang, Yun-Jiang
    Zhang, Kun
    Wei, Bingchen
    INTERNATIONAL JOURNAL OF PLASTICITY, 2025, 189
  • [30] Ultrahigh hardness with exceptional thermal stability of a nanocrystalline CoCrFeNiMn high-entropy alloy prepared by inert gas condensation
    Wang, Junjie
    Wu, Shangshu
    Fu, Shu
    Liu, Sinan
    Yan, Mengyang
    Lai, Qingquan
    Lan, Si
    Hahn, Horst
    Feng, Tao
    SCRIPTA MATERIALIA, 2020, 187 : 335 - 339