Solution of differential inclusion problem in controlled S-metric spaces via new multivalued fixed point theorem

被引:4
作者
Gangwar, Amit [1 ]
Rawat, Shivam [1 ]
Dimri, R. C. [1 ]
机构
[1] H N B Garhwal Univ, Srinagar 246174, Uttarakhand, India
关键词
Controlled metric space; S-metric space; Hausdorff S-metric; MAPPINGS;
D O I
10.1007/s41478-023-00574-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce a new extension of S-b-metric spaces, called controlled S-metric spaces. Further, in this newly generalized notion we establish some multivalued fixed point results. We also provide some non-trivial examples to vindicate our claims. As an application of our result, we demonstrate the existence of solution to a differential inclusion problem.
引用
收藏
页码:2459 / 2472
页数:14
相关论文
共 38 条
  • [11] Ciric LB, 2002, PUBL MATH-DEBRECEN, V60, P359
  • [12] Ciric Lj B., 2003, Fixed Point Theory, Contraction Mapping Principle
  • [13] Czerwik S., 1993, ACTA MATH INF U OSTR, V1, P5
  • [14] Debnath P., 2021, Metric fixed point theory: Applications in science, engineering and behavioural sciences, DOI 10.1007/978-981-16-4896-0
  • [15] Dhage BC, 1992, B CALCUTTA MATH SOC, V84, P329
  • [16] Frechet M. M., 1906, REND CIRC MATEM PALE, V22, P1, DOI [10.1007/BF03018603, DOI 10.1007/BF03018603]
  • [17] Gardasevic-Filipovic M, 2023, J CONTEMP MATH ANAL+, V58, P105, DOI 10.3103/S1068362323020036
  • [18] Gopalan S.T.Z.K., 2021, Dyn. Syst. Appl., V30, P111
  • [19] Itoh S., 1977, Comment. Math. Univ. Carol., V18, P247
  • [20] A Generalization of b-Metric Space and Some Fixed Point Theorems
    Kamran, Tayyab
    Samreen, Maria
    Ain, Qurat U. L.
    [J]. MATHEMATICS, 2017, 5 (02):