Approximate Solutions of a Fixed-Point Problem with an Algorithm Based on Unions of Nonexpansive Mappings

被引:0
作者
Zaslavski, Alexander J. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-3200003 Haifa, Israel
关键词
convergence analysis; fixed point; nonexpansive mapping; set-valued mapping;
D O I
10.3390/math11061534
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a fixed-point problem with a set-valued mapping by using an algorithm based on unions of nonexpansive mappings. We show that an approximate solution is reached after a finite number of iterations in the presence of computational errors. This result is an extension of the results known in the literature.
引用
收藏
页数:7
相关论文
共 23 条
  • [1] On the local convergence of the Douglas-Rachford algorithm
    Bauschke, H. H.
    Noll, D.
    [J]. ARCHIV DER MATHEMATIK, 2014, 102 (06) : 589 - 600
  • [2] A unifying approach for some nonexpansiveness conditions on modular vector spaces
    Bejenaru, Andreea
    Postolache, Mihai
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2020, 25 (05): : 827 - 845
  • [3] Censor Y., 2018, Pure Appl. Funct. Anal., V3, P565
  • [4] Gibali A., 2017, Pure Appl. Funct. Anal, V2, P243
  • [5] Outer approximation methods for solving variational inequalities in Hilbert space
    Gibali, Aviv
    Reich, Simeon
    Zalas, Rafal
    [J]. OPTIMIZATION, 2017, 66 (03) : 417 - 437
  • [6] Goebel K., 1984, UNIFORM CONVEXITY HY
  • [7] Goebel K., 1990, Topics in metric fixed point theory, DOI 10.1017/CBO9780511526152
  • [8] Numerical Reckoning Fixed Points of (E)-Type Mappings in Modular Vector Spaces
    Kassab, Wissam
    Turcanu, Teodor
    [J]. MATHEMATICS, 2019, 7 (05)
  • [9] Khamsi M.A., 2015, FIXED POINT THEORY M
  • [10] FIXED-POINT THEORY IN MODULAR FUNCTION-SPACES
    KHAMSI, MA
    KOZLOWSKI, WM
    REICH, S
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (11) : 935 - 953