The fundamental gap of a kind of sub-elliptic operator

被引:1
|
作者
Sun, Hongli [1 ]
Yang, Donghui [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Fundamental gap; sub-elliptic operator; weak solution; optimal function; 1ST; 2; EIGENVALUES; SCHRODINGER-OPERATORS; DIRICHLET PROBLEMS; SOBOLEV SPACES; WEAK SOLUTIONS; DEGENERATE; INEQUALITY; REGULARITY; MAXIMUM;
D O I
10.1017/prm.2022.34
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the minimum fundamental gap of a kind of sub-elliptic operator is concerned, we deal with the existence and uniqueness of weak solution for that. We verify that the minimization fundamental gap problem can be achieved by some function, and characterize the optimal function by adopting the differential of eigenvalues.
引用
收藏
页码:1118 / 1149
页数:32
相关论文
共 50 条
  • [21] Existence of positive eigenfunctions to an anisotropic elliptic operator via the sub-supersolution method
    Ciani, Simone
    Figueiredo, Giovany M.
    Suarez, Antonio
    ARCHIV DER MATHEMATIK, 2021, 116 (01) : 85 - 95
  • [22] Maximum Principle for a Kind of Elliptic Systems with Morrey Data
    Softova, Lubomira G.
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, 2018, 230 : 429 - 439
  • [23] On eigenvalues of a system of elliptic equations and of the biharmonic operator
    Chen, Daguang
    Cheng, Qing-Ming
    Wang, Qiaoling
    Xia, Changyu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) : 1146 - 1159
  • [24] The Fundamental Gap of Simplices
    Lu, Zhiqin
    Rowlett, Julie
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 319 (01) : 111 - 145
  • [25] Approximations for the complete elliptic integral of the second Kind
    Qian, Wei-Mao
    Wang, Miao-Kun
    Xu, Hui-Zuo
    Chu, Yu-Ming
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [26] SHARP FUNDAMENTAL GAP ESTIMATE ON CONVEX DOMAINS OF SPHERE
    Seto, Shoo
    Wang, Lili
    Wei, Guofang
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2019, 112 (02) : 347 - 389
  • [27] On the number of negative eigenvalues of an elliptic operator
    El Aidi, Mohammed
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (04): : 434 - 456
  • [28] Sharp approximations for the generalized elliptic integral of the first kind
    He, Zai-Yin
    Jiang, Yue-Ping
    Wang, Miao-Kun
    MATHEMATICA SLOVACA, 2023, 73 (02) : 425 - 438
  • [29] Sharp inequalities for the generalized elliptic integrals of the first kind
    Zhen-Hang Yang
    Jingfeng Tian
    The Ramanujan Journal, 2019, 48 : 91 - 116
  • [30] The basin of attraction method for a kind of nonlinear elliptic equations
    Yan-qing Feng
    Boundary Value Problems, 2014