Minimum and maximum quantum uncertainty states for qubit systems

被引:3
作者
Li, Huihui [1 ,2 ]
Luo, Shunlong [1 ,2 ]
Zhang, Yue [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
uncertainty relations; minimum uncertainty; maximum uncertainty; stabilizer states; T-gate; COHERENT; INTELLIGENT; INFORMATION; COLLOQUIUM; CRITERION; PRODUCT; ERROR;
D O I
10.1088/1751-8121/ad32a0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the notion of (renormalized) quantum uncertainty and reveal its basic features. In terms of this quantity, we completely characterize the minimum and maximum quantum uncertainty states for qubit systems involving Pauli matrices. It turns out that the minimum quantum uncertainty states consist of both certain pure states and certain mixed states, in sharp contrast to the case of conventional Heisenberg uncertainty relation. The maximum quantum uncertainty states are H-type magic states arising from the stabilizer formalism of quantum computation, and can be obtained from minimum quantum uncertainty states via the T-gate.
引用
收藏
页数:15
相关论文
共 76 条
[1]  
Agarwal GS, 2002, FORTSCHR PHYS, V50, P575, DOI 10.1002/1521-3978(200205)50:5/7<575::AID-PROP575>3.0.CO
[2]  
2-3
[3]  
[Anonymous], 1927, Z. Phys, DOI [10.1007/BF01391200, DOI 10.1007/BF01391200]
[4]   INTELLIGENT SPIN STATES [J].
ARAGONE, C ;
CHALBAUD, E ;
SALAMO, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (11) :1963-1971
[5]   PHYSICAL SIGNIFICANCE OF MINIMUM UNCERTAINTY STATES OF AN ANGULAR-MOMENTUM SYSTEM [J].
BACRY, H .
PHYSICAL REVIEW A, 1978, 18 (02) :617-619
[6]   MINIMUM UNCERTAINTY STATES FOR AMPLITUDE-SQUARED SQUEEZING - HERMITE POLYNOMIAL STATES [J].
BERGOU, JA ;
HILLERY, M ;
YU, DQ .
PHYSICAL REVIEW A, 1991, 43 (01) :515-520
[7]   Complementarity and the uncertainty relations [J].
Björk, G ;
Söderholm, J ;
Trifonov, A ;
Tsegaye, T ;
Karlsson, A .
PHYSICAL REVIEW A, 1999, 60 (03) :1874-1882
[8]   Error-tradeoff and error-disturbance relations for incompatible quantum measurements [J].
Branciard, Cyril .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (17) :6742-6747
[9]   Universal quantum computation with ideal Clifford gates and noisy ancillas [J].
Bravyi, S ;
Kitaev, A .
PHYSICAL REVIEW A, 2005, 71 (02)
[10]   SU(2) and SU(1,1) algebra eigenstates: A unified analytic approach to coherent and intelligent states [J].
Brif, C .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (07) :1651-1682