A Self-Organizing Map Clustering Approach to Support Territorial Zoning

被引:0
作者
da Silva, Marcos A. S. [1 ]
Barreto, Pedro V. de A. [1 ,2 ]
Matos, Leonardo N. [2 ]
Miranda Junior, Gastao F. [3 ]
Dompieri, Marcia H. G. [4 ]
de Moura, Fabio R. [5 ]
Resende, Fabricia K. S. [2 ]
Novais, Paulo [6 ]
Oliveira, Pedro [7 ]
机构
[1] Embrapa Coastal Tablelands, BR-49025370 Aracaju, SE, Brazil
[2] Univ Fed Sergipe, Dept Comp Sci, Sao Cristovao, SE, Brazil
[3] Univ Fed Sergipe, Dept Math, Sao Cristovao, SE, Brazil
[4] Embrapa Terr, BR-13070115 Campinas, SP, Brazil
[5] Univ Fed Sergipe, Dept Econ, Sao Cristovao, SE, Brazil
[6] Univ Minho, Dept Comp, Braga, Portugal
[7] Minho Univ, ALGORITMI Ctr, LASI, Braga, Portugal
来源
PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I | 2024年 / 14469卷
关键词
Alto Taquari basin; Ordinal categorical data; Spatial Analysis;
D O I
10.1007/978-3-031-49018-7_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work aims to evaluate three strategies for analyzing clusters of ordinal categorical data (thematic maps) to support the territorial zoning of the Alto Taquari basin, MS/MT. We evaluated a model-based method, another based on the segmentation of the multi-way contingency table, and the last one based on the transformation of ordinal data into intervals and subsequent analysis of clusters from a proposed method of segmentation of the Self-Organizing Map after the neural network training process. The results showed the adequacy of the methods based on the Self-Organizen Map and the segmentation of the contingency table, as these techniques generated unimodal clusters with distinguishable groups.
引用
收藏
页码:272 / 286
页数:15
相关论文
共 21 条
[1]  
Agarwal P., 2008, Self-organising maps: Applications in geographic information science
[2]  
Agresti Alan., 2010, Wiley Series in Probability and Statistics, V2nd, DOI [10.1002/9780470594001, DOI 10.1002/9780470594001]
[3]   Model-based clustering of multivariate ordinal data relying on a stochastic binary search algorithm [J].
Biernacki, Christophe ;
Jacques, Julien .
STATISTICS AND COMPUTING, 2016, 26 (05) :929-943
[4]   Identification of environment types and adaptation zones with self-organizing maps; applications to sunflower multi-environment data in Europe [J].
Bustos-Korts, Daniela ;
Boer, Martin P. ;
Layton, Jamie ;
Gehringer, Anke ;
Tang, Tom ;
Wehrens, Ron ;
Messina, Charlie ;
de la Vega, Abelardo J. ;
van Eeuwijk, Fred A. .
THEORETICAL AND APPLIED GENETICS, 2022, 135 (06) :2059-2082
[5]  
Costa J.A.F., 2003, 6 C BRAS RED NEUR, P451
[6]  
Furtado BA, 2015, Modeling Complex Systems for Public Policies
[7]   A Clustering Method for Categorical Ordinal Data [J].
Giordan, Marco ;
Diana, Giancarlo .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (07) :1315-1334
[8]   Rock: A robust clustering algorithm for categorical attributes [J].
Guha, S ;
Rastogi, R ;
Shim, K .
INFORMATION SYSTEMS, 2000, 25 (05) :345-366
[9]  
Kaufman L., 1990, FINDING GROUPS DATA
[10]  
Kohonen T., 2001, INFORM SCIENCES