Construction of Two Classes of Minimal Binary Linear Codes from Definition Sets

被引:0
作者
Wu, Hao [1 ,2 ]
Du, Xiaoni [1 ]
Qiao, Xingbin [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
[2] Northwest Normal Univ, Key Lab Cryptog & Data Analyt, Lanzhou 730070, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
linear code; minimal linear code; definition set; weight distri-bution;
D O I
10.1587/transfun.2023SDP0004
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Linear codes have wide applications in many fields such as data storage, communication, cryptography, combinatorics. As a subclass of linear codes, minimal linear codes can be used to construct secret sharing schemes with good access structures. In this paper, we first construct some new classes of linear codes by selecting definition set properly. Then, the lengths, dimensions and the weight distribution of the codes are determined by investigating whether the intersections of the supports of vectors and the definition sets are empty. Results show that both wide and narrow minimal linear codes are contained in the new codes. Finally, we extend some existing results to general cases.
引用
收藏
页码:1470 / 1474
页数:5
相关论文
共 11 条
[1]   Minimal vectors in linear codes [J].
Ashikhmin, A ;
Barg, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) :2010-2017
[2]  
Calkavur S, 2020, Emerg. Sci. J., V4, DOI [10.28991/esj-2020-01229, DOI 10.28991/ESJ-2020-01229]
[3]  
Cohen Gerard D., 2013, Cryptography and Coding. 14th IMA International Conference, IMACC 2013. Proceedings: LNCS 8308, P85, DOI 10.1007/978-3-642-45239-0_6
[4]   Minimal Binary Linear Codes [J].
Ding, Cunsheng ;
Heng, Ziling ;
Zhou, Zhengchun .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) :6536-6545
[5]   Minimal linear codes over finite fields [J].
Heng, Ziling ;
Ding, Cunsheng ;
Zhou, Zhengchun .
FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 :176-196
[6]  
Li X, 2020, DESIGN CODE CRYPTOGR, V88, P257, DOI 10.1007/s10623-019-00682-1
[7]   The parameters of minimal linear codes [J].
Lu, Wei ;
Wu, Xia ;
Cao, Xiwang .
FINITE FIELDS AND THEIR APPLICATIONS, 2021, 71
[8]   Practical Privacy-Preserving Indoor Localization Based on Secure Two-Party Computation [J].
Nieminen, Raine ;
Jarvinen, Kimmo .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (09) :2877-2890
[9]  
Sung-Tai Choi, 2012, Proceedings of the 2012 IEEE International Symposium on Information Theory - ISIT, P2901, DOI 10.1109/ISIT.2012.6284056
[10]   The weight enumerators of several classes of p-ary cyclic codes [J].
Zheng, Dabin ;
Wang, Xiaoqiang ;
Yu, Long ;
Liu, Hongwei .
DISCRETE MATHEMATICS, 2015, 338 (07) :1264-1276