Scattering and Minimization Theory for Cubic Inhomogeneous Nls with Inverse Square Potential

被引:0
作者
Hajaiej, Hichem [1 ]
Luo, Tingjian [2 ]
Wang, Ying [3 ]
机构
[1] Calif State Univ Los Angeles, Los Angeles, CA USA
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[3] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Inhomogeneous Schrodinger equation; Inverse square potential; Scattering; Virial/Morawetz estimate; Normalized solutions; Ground state solutions; NONLINEAR SCHRODINGER-EQUATION; GROUND-STATE; PROOF; SPACE; DECAY;
D O I
10.1007/s10884-023-10301-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the scattering theory for the cubic inhomogeneous Schrodinger equations with inverse square potential iut + u - a |x|2 u =.|x|-b|u|2u with a > - 1 4 and 0 < b < 1 in dimension three. In the defocusing case (i.e.. = 1), we establish the global well-posedness and scattering for any initial data in the energy space H1 a (R3). While for the focusing case(i.e.. = -1), we obtain the scattering for the initial data below the threshold of the ground state, by making use of the virial/Morawetz argument as in Dodson and Murphy (Proc Am Math Soc 145:4859-4867, 2017) and Campos and Cardoso (Proc Am Math Soc 150:2007-2021, 2022) that avoids the use of interaction Morawetz estimate. We also address the existence and the non-existence of normalized solutions of the above Schrodinger equation in dimension N for the focusing and defocusing cases.
引用
收藏
页码:3457 / 3480
页数:24
相关论文
共 35 条
[1]  
[Anonymous], 1975, Lecture Notes in Math.
[2]   Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Vekslerchik, Vadym ;
Torres, Pedro J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[3]   A SHARP GAGLIARDO-NIRENBERG INEQUALITY AND ITS APPLICATION TO FRACTIONAL PROBLEMS WITH INHOMOGENEOUS NONLINEARITY [J].
Bhimani, Divyang G. ;
Hajaiej, Hichem ;
Haque, Saikatul ;
LUo, Tingjian .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2023, 12 (01) :362-390
[4]   Strichartz estimates for the wave and Schrodinger equations with the inverse-square potential [J].
Burq, N ;
Planchon, F ;
Stalker, JG ;
Tahvildar-Zadeh, AS .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (02) :519-549
[5]   A VIRIAL-MORAWETZ APPROACH TO SCATTERING FOR THE NON-RADIAL INHOMOGENEOUS NLS [J].
Campos, Luccas ;
Cardoso, Mykael .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (05) :2007-2021
[6]   On the inhomogeneous NLS with inverse-square potential [J].
Campos, Luccas ;
Guzman, Carlos M. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04)
[7]   Scattering of radial solutions to the inhomogeneous nonlinear Schrodinger equation [J].
Campos, Luccas .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
[8]   ON THE STANDING WAVES FOR THE X-RAY FREE ELECTRON LASER SCHRODINGER EQUATION [J].
Cao, Daomin ;
Feng, Binhua ;
Luo, Tingjian .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, :6097-6137
[9]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[10]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics, V10