Graph Neural Networks and 3-dimensional topology

被引:2
作者
Ri, Song Jin [1 ,2 ]
Putrov, Pavel [2 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2023年 / 4卷 / 03期
关键词
Graph neural networks; plumbed; 3-manifolds; reinforcement learning; supervised learning;
D O I
10.1088/2632-2153/acf097
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We test the efficiency of applying geometric deep learning to the problems in low-dimensional topology in a certain simple setting. Specifically, we consider the class of 3-manifolds described by plumbing graphs and use graph neural networks (GNN) for the problem of deciding whether a pair of graphs give homeomorphic 3-manifolds. We use supervised learning to train a GNN that provides the answer to such a question with high accuracy. Moreover, we consider reinforcement learning by a GNN to find a sequence of Neumann moves that relates the pair of graphs if the answer is positive. The setting can be understood as a toy model of the problem of deciding whether a pair of Kirby diagrams give diffeomorphic 3- or 4-manifolds.
引用
收藏
页数:16
相关论文
共 25 条
[1]  
Bronstein M M., 2021, IEEE ACCESS
[2]   A Comprehensive Survey on Geometric Deep Learning [J].
Cao, Wenming ;
Yan, Zhiyue ;
He, Zhiquan ;
He, Zhihai .
IEEE ACCESS, 2020, 8 :35929-35949
[3]   Learning knot invariants across dimensions [J].
Craven, Jessica ;
Hughes, Mark ;
Jejjala, Vishnu ;
Kar, Arjun .
SCIPOST PHYSICS, 2023, 14 (02)
[4]   Advancing mathematics by guiding human intuition with AI [J].
Davies, Alex ;
Velickovic, Petar ;
Buesing, Lars ;
Blackwell, Sam ;
Zheng, Daniel ;
Tomasev, Nenad ;
Tanburn, Richard ;
Battaglia, Peter ;
Blundell, Charles ;
Juhasz, Andras ;
Lackenby, Marc ;
Williamson, Geordie ;
Hassabis, Demis ;
Kohli, Pushmeet .
NATURE, 2021, 600 (7887) :70-+
[5]  
Fey M., 2019, INT C LEARN REPR NEW
[6]  
Gompf R., 1999, 4 MANIFOLDS KIRBY CA
[7]   Learning to unknot [J].
Gukov, Sergei ;
Halverson, James ;
Ruehle, Fabian ;
Sulkowski, Piotr .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (02)
[8]  
He YH, 2023, Arxiv, DOI arXiv:2303.12626
[9]   A neural network approach to predicting and computing knot invariants [J].
Hughes, Mark C. .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (03)
[10]   Deep learning the hyperbolic volume of a knot [J].
Jejjala, Vishnu ;
Kar, Arjun ;
Parrikar, Onkar .
PHYSICS LETTERS B, 2019, 799