On the topological size of the class of Leray solutions with algebraic decay

被引:4
作者
Brandolese, Lorenzo [1 ,4 ]
Perusato, Cilon F. [2 ]
Zingano, Paulo R. [3 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, Lyon, France
[2] Univ Fed Pernambuco, Dept Matemat, Recife, Brazil
[3] Univ Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada, Porto Alegre, Brazil
[4] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, F-69622 Lyon, France
关键词
NAVIER-STOKES EQUATIONS; WEAK SOLUTIONS;
D O I
10.1112/blms.12912
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1987, Michael Wiegner in his seminal paper (J. Lond. Math. Soc. (2), 35 (1987) 303-313) provided an important result regarding the energy decay of Leray solutions u(& BULL;,t)$ \bm{u}(\cdot ,t)$ to the incompressible Navier-Stokes in Rn$ \mathbb {R}<^>{n}$: if the associated Stokes flows had their L2$L<^>{2}$ norms bounded by O(1+t)-& alpha;$ O(1 + t)<^>{-\;\!\alpha }$ for some 0<& alpha;& LE;(n+2)/4$ 0 < \alpha \leqslant (n+2)/4$, then the same would be true of & PAR;u(& BULL;,t)& PAR;L2(Rn)$ \Vert \hspace{0.56917pt} \bm{u}(\cdot ,t) \hspace{0.56917pt} \Vert _{L<^>{2}(\mathbb {R}<^>{n})}$. The converse also holds, as shown by Skalak (J. Math. Fluid Mech. 16 (2014) 431-446) and by our analysis below, which uses a more straightforward argument. As an application of these results, we discuss the genericity problem of algebraic decay estimates for Leray solutions of the unforced Navier-Stokes equations. In particular, we prove that Leray solutions with algebraic decay generically satisfy two-sided bounds of the form (1+t)-& alpha;& LSIM;& PAR;u(& BULL;,t)& PAR;L2(Rn)& LSIM;(1+t)-& alpha;$(1+t)<^>{-\alpha }\lesssim \Vert \bm{u}(\cdot ,t)\Vert _{L<^>2(\mathbb {R}<^>n)} \lesssim (1+t)<^>{-\alpha }$.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 18 条
[1]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[2]  
Bjorland C, 2009, ADV DIFFERENTIAL EQU, V14, P241
[3]  
Brandolese L., 2018, HDB MATH ANAL MECH V, P579
[4]   CHARACTERIZATION OF SOLUTIONS TO DISSIPATIVE SYSTEMS WITH SHARP ALGEBRAIC DECAY [J].
Brandolese, Lorenzo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) :1616-1633
[5]   Nonlinear open mapping principles, with applications to the Jacobian equation and other scale-invariant PDEs [J].
Guerra, Andre ;
Koch, Lukas ;
Lindberg, Sauli .
ADVANCES IN MATHEMATICS, 2023, 415
[6]   Upper and lower H? m estimates for solutions to parabolic equations [J].
Guterres, Robert H. ;
Niche, Cesar J. ;
Perusato, Cilon F. ;
Zingano, Paulo R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 356 :407-431
[7]   On two new inequalities for Leray solutions of the Navier-Stokes equations in Rn [J].
Hagstrom, T. ;
Lorenz, J. ;
Zingano, J. P. ;
Zingano, P. R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (01)
[8]   Decay in Time of Incompressible Flows [J].
Kreiss, Heinz-Otto ;
Hagstrom, Thomas ;
Lorenz, Jens ;
Zingano, Paulo .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2003, 5 (03) :231-244
[9]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[10]   Decay characterization of solutions to dissipative equations [J].
Niche, C. J. ;
Schonbek, M. E. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 91 :573-595