On Dirichlet series similar to Hadamard compositions in half-plane

被引:2
作者
Bandura, A. I. [1 ]
Mulyava, O. M. [2 ]
Sheremeta, M. M. [3 ]
机构
[1] Ivano Frankivsk Natl Tech Univ Oil & Gas, 15 Karpatska Str, UA-76019 Ivano Frankivsk, Ukraine
[2] Natl Univ Food Technol, 68 Volodymyrska Str, UA-01033 Kiev, Ukraine
[3] Ivan Franko Natl Univ Lviv, 1 Univ Ska St, UA-79001 Lvov, Ukraine
基金
新加坡国家研究基金会;
关键词
Dirichlet series; Hadamard composition; generalized order; generalized type; generalized convergence class; pseudostarlikeness; pseudoconvexity;
D O I
10.15330/cmp.15.1.180-195
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F(s) = n-ary sumation n=1 an exp{sAn} and Fj (s) = n-ary sumation n= 1 an,j exp{sAn}, j = 1, p, be Dirichlet series with expo-nents 0 & LE; An & UARR; +00, n & RARR; 00, and the abscissas of absolutely convergence equal to 0. The function F is called Hadamard composition of the genus m & GE; 1 of the functions Fj if an = P(an,1, ... , an,p), where P(x1, . . . , xp) = n-ary sumation k1+& BULL;& BULL;& BULL;+kp=m of generalized orders and convergence classes the connection between the growth of the functions Fj and the growth of the Hadamard composition F of the genus m & GE; 1 of Fj is investigated. The pseudostarlikeness and pseudoconvexity of the Hadamard composition of the genus m & GE; 1 are studied. ck1... kpxk1 1 & BULL;& BULL;& BULL; xkp p is a homogeneous polynomial of degree m. In terms
引用
收藏
页码:180 / 195
页数:16
相关论文
共 17 条
  • [1] Bieberbach L., 1955, Analytische Fortsetzung
  • [2] Calys E.G., 1964, RIV MATH U PARMA NS, V5, P133
  • [3] Gal Yu M., 1980, GROWTH ANALYTI UNPUB
  • [4] Gal Yu M., 1978, DOKL AN USSR A, V12, P1964
  • [5] Hadamard J., 1899, ACTA MATH-DJURSHOLM, V22, P55, DOI [10.1007/BF02417870, DOI 10.1007/BF02417870]
  • [6] Hadamard J, 1902, MONATSH MATH, V13, P43, DOI [10.1007/BF01703378, DOI 10.1007/BF01703378]
  • [7] Holovata O.M., 2020, Mat. Metody Fiz.-Mekh. Polya, V61, P57, DOI [10.1007/s10958-020-04948-1, DOI 10.1007/S10958-020-04948-1]
  • [8] On the growth of a klasss of entire Dirichlet series
    Kulyavetc, L., V
    Mulyava, O. M.
    [J]. CARPATHIAN MATHEMATICAL PUBLICATIONS, 2014, 6 (02) : 300 - 309
  • [9] Kulyavetc' LV, 2017, CARPATHIAN MATH PUBL, V9, P63, DOI 10.15330/cmp.9.1.63-71
  • [10] Leontev A. F., 1976, Series of Exponents