TIME-OPTIMAL TRAJECTORY GENERATION FOR INDUSTRIAL ROBOTS BASED ON ELITE MUTATION SPARROW SEARCH ALGORITHM

被引:0
|
作者
Li, Chunyan [1 ]
Chao, Yongsheng [1 ]
Chen, Shuai [1 ]
Li, Jiarong [1 ]
Yuan, Yiping [1 ]
机构
[1] Xinjiang Univ, Sch Mech Engn, Xinjiang 830017, Peoples R China
基金
中国国家自然科学基金;
关键词
Traectory pannng; tme optma; non-unform septc B-spne; ete mutaton sparrow searcagortm EManconstrant elite mutation sparrow search algorithm (EMSSA) and constraint voaton; MANIPULATORS; OPTIMIZATION;
D O I
10.2316/J.2023.206-0754)
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To mprove the efficency anstaty of nustraroots, a To i p ove the efficie cy a d stability of i dust ial obots a tme optmatraectory pannng metoaseon an ete mu time-optimal trajectory planning method based on an elite mu-taton sparrow searcagortm EMs proposeFrst a tation sparrow search algorithm (EMSSA) is proposed . First, a non unform septc B spne nterpoaton traectory functon s con non-uniform septic B-spline interpolation trajectory function is con-structe, wcovercomes te sortcomng of unsmootont ac-structed which overcomes the shortcoming of unsmooth joint ac ceeraton or ern ow orer nterpoaton anassgns nematc celeration or jerk in low-order interpolation and assigns kinematic parameters at the startng anstoppng ponts. econ, the fitness pa a ete s at the sta ti g a d stoppi g poi ts Seco d the fit ess functon s constructet mnmzes te sum of tme ntervas function is constructed . It minimizes the sum of time intervals etween two aacent nots n B spne traectory conserng ne between two adjacent knots in B-spline trajectory considering kine-matc constrants n EMs proposeto sceue te tme matic constraints. An EMSSA is proposed to schedule the time ntervas angenerate te tme optmaseptc B spne traectory intervals and generate the time-optimal septic B-spline trajectory. Ete reverse earnng strategy s useto optmze te ntapopua Elite reverse learning strategy is used to optimize the initial popula-to a accee ate the co ve ge ce speeof the ago th Beses tion and accelerate the convergence speed of the algorithm. Besides, to enance te souton quaty anavofang nto ocaoptmza to enhance the solution quality and avoid falling into local optimiza-ton te agortm s mprovey cosne escenng searcstep tion, the algorithm is improved by cosine -descending search step annormaaucy mutaton strateges Furtermore an exampe and normal -Cauchy mutation strategies. Furthermore, an example s gven to verfy tat te proposeagortm s eectve n sovng is given to verify that the proposed algorithm is effective in solving the te optat aecto y pa g p oe wth utco st at the ti me-opti mal trajectory planni ng problem with multi-constrai nt anas te avantages of fast sovng speegprecson anand has the advantages of fast solving speed , high precision, and gooroustness. good robustness
引用
收藏
页码:126 / 135
页数:10
相关论文
共 50 条
  • [1] Online near time-optimal trajectory planning for industrial robots
    Kim, Joonyoung
    Croft, Elizabeth A.
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2019, 58 : 158 - 171
  • [2] Time-optimal trajectory planning for 6R manipulator arm based on chaotic improved sparrow search algorithm
    Jiao, Yinjia
    Zhao, Yujie
    Wen, Shiguang
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2025,
  • [3] Smooth and near time-optimal trajectory planning of industrial robots for online applications
    Xiao, Yongqiang
    Du, Zhijiang
    Dong, Wei
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2012, 39 (02): : 169 - 177
  • [4] Optimal trajectory planning for industrial robots using harmony search algorithm
    Chen, Youdong
    Yan, Liang
    Wei, Hongxing
    Wang, Tianmiao
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2013, 40 (05): : 502 - 512
  • [5] Smooth and Time-Optimal Trajectory Planning for Robots Using Improved Carnivorous Plant Algorithm
    Wei, Bo
    Liu, Changyi
    Zhang, Xin
    Zheng, Kai
    Cao, Zhengfeng
    Chen, Zexin
    MACHINES, 2024, 12 (11)
  • [6] Time-optimal trajectory planning of serial manipulator based on adaptive cuckoo search algorithm
    Zhang, Lunhui
    Wang, Yong
    Zhao, Xiaoyong
    Zhao, Ping
    He, Liangguo
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2021, 35 (07) : 3171 - 3181
  • [7] Optimal trajectory generation in joint space for 6R industrial serial robots using cuckoo search algorithm
    Karahan, Oguzhan
    Karci, Hasan
    Tangel, Ali
    INTELLIGENT SERVICE ROBOTICS, 2022, 15 (05) : 627 - 648
  • [8] Time-optimal trajectory planning for industrial robots with end-effector acceleration constraints
    Romero, Samuel
    Maria Montes, Ana
    Rodriguez, Carlos F.
    Alvarez Martinez, David
    Valero, Jorge S.
    2023 IEEE 6TH COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL, CCAC, 2023, : 107 - 112
  • [9] Time-Optimal Trajectory Planning for Industrial Robot
    Chen Weihua
    Zhang Tie
    Zou Yanbiao
    ISTM/2009: 8TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, 2009, : 2847 - 2850
  • [10] Time-Optimal Trajectory Planning for Robots with Identified Dynamics
    Lin, Shize
    Wang, Ze
    Hu, Chuxiong
    Zhu, Yu
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE-ROBIO 2021), 2021, : 1890 - 1895