We discuss systematically two versions of confidence regions: those based on p-values and those based on e-values, a recent alternative to p-values. Both versions can be applied to multiple hypothesis testing, and in this paper we are interested in procedures that control the number of false dis-coveries under arbitrary dependence between the base p- or e-values. We in-troduce a procedure that is based on e-values and show that it is efficient both computationally and statistically using simulated and real-world data sets. Comparison with the corresponding standard procedure based on p-values is not straightforward, but there are indications that the new one performs significantly better in some situations.
机构:
Stanford Univ, Stanford Prevent Res Ctr, Sch Med, Stanford, CA 94305 USA
Stanford Univ, Meta Res Innovat Ctr Stanford METRICS, Stanford, CA 94305 USAStanford Univ, Stanford Prevent Res Ctr, Sch Med, Stanford, CA 94305 USA
Ioannidis, John P. A.
Tan, Yuan Jin
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Meta Res Innovat Ctr Stanford METRICS, Stanford, CA 94305 USAStanford Univ, Stanford Prevent Res Ctr, Sch Med, Stanford, CA 94305 USA
Tan, Yuan Jin
Blum, Manuel R.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Meta Res Innovat Ctr Stanford METRICS, Stanford, CA 94305 USA
Univ Bern, Bern Univ Hosp, Bern, SwitzerlandStanford Univ, Stanford Prevent Res Ctr, Sch Med, Stanford, CA 94305 USA
机构:
Stanford Univ, Dept Stat, 390 Jane Stanford Way, Stanford, CA 94305 USAStanford Univ, Dept Stat, 390 Jane Stanford Way, Stanford, CA 94305 USA
Gablenz, Paula
Sabatti, Chiara
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Stat, 390 Jane Stanford Way, Stanford, CA 94305 USA
Stanford Univ, Dept Biomed Data Sci, Med Sch Off Bldg 1265 Welch Rd MC5464, Stanford, CA 94305 USAStanford Univ, Dept Stat, 390 Jane Stanford Way, Stanford, CA 94305 USA