Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: regularity and error analysis

被引:6
作者
Gilbert, Alexander D. [1 ]
Scheichl, Robert [2 ,3 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Heidelberg Univ, Inst Appl Math & Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
stochastic eigenvalue problems; quasi-Monte Carlo; uncertainty quantification; multilevel Monte Carlo; PARTIAL-DIFFERENTIAL-EQUATIONS; PETROV-GALERKIN DISCRETIZATION; BY-COMPONENT CONSTRUCTION; RANK-1 LATTICE RULES; APPROXIMATION; EFFICIENT; ALGORITHMS;
D O I
10.1093/imanum/drad011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stochastic partial differential equation (PDE) eigenvalue problems are useful models for quantifying the uncertainty in several applications from the physical sciences and engineering, e.g., structural vibration analysis, the criticality of a nuclear reactor or photonic crystal structures. In this paper we present a multilevel quasi-Monte Carlo (MLQMC) method for approximating the expectation of the minimal eigenvalue of an elliptic eigenvalue problem with coefficients that are given as a series expansion of countably-many stochastic parameters. The MLQMC algorithm is based on a hierarchy of discretizations of the spatial domain and truncations of the dimension of the stochastic parameter domain. To approximate the expectations, randomly shifted lattice rules are employed. This paper is primarily dedicated to giving a rigorous analysis of the error of this algorithm. A key step in the error analysis requires bounds on the mixed derivatives of the eigenfunction with respect to both the stochastic and spatial variables simultaneously. Under stronger smoothness assumptions on the parametric dependence, our analysis also extends to multilevel higher-order quasi-Monte Carlo rules. An accompanying paper (Gilbert, A. D. & Scheichl, R. (2023) Multilevel quasi-Monte Carlo methods for random elliptic eigenvalue problems II: efficient algorithms and numerical results. IMA J. Numer. Anal.) focusses on practical extensions of the MLQMC algorithm to improve efficiency and presents numerical results.
引用
收藏
页码:466 / 503
页数:38
相关论文
共 47 条
  • [1] Andreev R., 2012, LECT NOTES COMPUTATI, V83, P203, DOI [DOI 10.1007/978-3-642-22061-67, DOI 10.1007/978-3-642-22061-6_7]
  • [2] [Anonymous], 1966, Iterative solution of elliptic systems and applications to the neutron diffusion equations of reactor physics
  • [3] Verification, validation and uncertainty quantification in multi-physics modeling for nuclear reactor design and safety analysis
    Avramova, Maria N.
    Ivanov, Kostadin N.
    [J]. PROGRESS IN NUCLEAR ENERGY, 2010, 52 (07) : 601 - 614
  • [4] Uncertainty quantification in neutron transport with generalized polynomial chaos using the method of characteristics
    Ayres, D. A. F.
    Eaton, M. D.
    Hagues, A. W.
    Williams, M. M. R.
    [J]. ANNALS OF NUCLEAR ENERGY, 2012, 45 : 14 - 28
  • [5] FINITE ELEMENT-GALERKIN APPROXIMATION OF THE EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS
    BABUSKA, I
    OSBORN, JE
    [J]. MATHEMATICS OF COMPUTATION, 1989, 52 (186) : 275 - 297
  • [6] Babuska I., 1991, HDB NUMERICAL ANAL, V2, P640
  • [7] Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients
    Barth, Andrea
    Schwab, Christoph
    Zollinger, Nathaniel
    [J]. NUMERISCHE MATHEMATIK, 2011, 119 (01) : 123 - 161
  • [8] Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
  • [9] Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients
    Cliffe, K. A.
    Giles, M. B.
    Scheichl, R.
    Teckentrup, A. L.
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (01) : 3 - 15
  • [10] IMPROVED EFFICIENCY OF A MULTI-INDEX FEM FOR COMPUTATIONAL UNCERTAINTY QUANTIFICATION
    Dick, Josef
    Feischl, Michael
    Schwab, Christoph
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) : 1744 - 1769