Prediction of protein structures, functions and interactions using the IntFOLD7, MultiFOLD and ModFOLDdock servers

被引:46
作者
McGuffin, Liam J. [1 ]
Edmunds, Nicholas S. [1 ]
Genc, Ahmet G. [1 ]
Alharbi, Shuaa M. A. [1 ]
Salehe, Bajuna R. [1 ,2 ]
Adiyaman, Recep [1 ]
机构
[1] Univ Reading, Sch Biol Sci, Whiteknights, Reading RG6 6EX, England
[2] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England
基金
英国生物技术与生命科学研究理事会;
关键词
INTRINSIC DISORDER PREDICTION; MODEL QUALITY ASSESSMENT; FOLD RECOGNITION; LOCAL QUALITY; REFINEMENT; ACCURACY; REFOLD;
D O I
10.1093/nar/gkad297
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The IntFOLD server based at the University of Reading has been a leading method over the past decade in providing free access to accurate prediction of protein structures and functions. In a post-AlphaFold2 world, accurate models of tertiary structures are widely available for even more protein targets, so there has been a refocus in the prediction community towards the accurate modelling of protein-ligand interactions as well as modelling quaternary structure assemblies. In this paper, we describe the latest improvements to IntFOLD, which maintains its competitive structure prediction performance by including the latest deep learning methods while also integrating accurate model quality estimates and 3D models of protein-ligand interactions. Further-more, we also introduce our two new server methods: MultiFOLD for accurately modelling both tertiary and quaternary structures, with performance which has been independently verified to outperform the standard AlphaFold2 methods, and ModFOLDdock, which provides world-leading quality estimates for quaternary structure models. The IntFOLD7, Multi-FOLD and ModFOLDdock servers are available at: https://www.reading.ac.uk/bioinf/.
引用
收藏
页码:W274 / W280
页数:7
相关论文
共 25 条
[1]   ReFOLD3: refinement of 3D protein models with gradual restraints based on predicted local quality and residue contacts [J].
Adiyaman, Recep ;
McGuffin, Liam J. .
NUCLEIC ACIDS RESEARCH, 2021, 49 (W1) :W589-W596
[2]   Protein tertiary structure prediction and refinement using deep learning and Rosetta in CASP14 [J].
Anishchenko, Ivan ;
Baek, Minkyung ;
Park, Hahnbeom ;
Hiranuma, Naozumi ;
Kim, David E. ;
Dauparas, Justas ;
Mansoor, Sanaa ;
Humphreys, Ian R. ;
Baker, David .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2021, 89 (12) :1722-1733
[3]   DockQ: A Quality Measure for Protein-Protein Docking Models [J].
Basu, Sankar ;
Wallner, Bjorn .
PLOS ONE, 2016, 11 (08)
[4]   Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology [J].
Bertoni, Martino ;
Kiefer, Florian ;
Biasini, Marco ;
Bordoli, Lorenza ;
Schwede, Torsten .
SCIENTIFIC REPORTS, 2017, 7
[5]   OpenStructure: an integrated software framework for computational structural biology [J].
Biasini, M. ;
Schmidt, T. ;
Bienert, S. ;
Mariani, V. ;
Studer, G. ;
Haas, J. ;
Johner, N. ;
Schenk, A. D. ;
Philippsen, A. ;
Schwede, T. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2013, 69 :701-709
[6]   Estimation of model accuracy in CASP13 [J].
Chene, Jianlin ;
Choe, Myong-Ho ;
Elofsson, Arne ;
Han, Kun-Sop ;
Hoe, Jie ;
Maghrabi, Ali H. A. ;
McGuffin, Liam J. ;
Menendez-Hurtado, David ;
Olechnovic, Klinnent ;
Schwede, Torsten ;
Studer, Gabriel ;
Uziela, Karolis ;
Venclovas, Ceslovas ;
Wallner, Bjorn .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2019, 87 (12) :1361-1377
[7]   Methods for estimation of model accuracy in CASP12 [J].
Elofsson, Arne ;
Joo, Keehyoung ;
Keasar, Chen ;
Lee, Jooyoung ;
Maghrabi, Ali H. A. ;
Manavalan, Balachandran ;
McGuffin, Liam J. ;
Hurtado, David Menendez ;
Mirabello, Claudio ;
Pilstal, Robert ;
Sidi, Tomer ;
Uziela, Karolis ;
Wallner, Bjorn .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2018, 86 :361-373
[8]   Improved protein structure refinement guided by deep learning based accuracy estimation [J].
Hiranuma, Naozumi ;
Park, Hahnbeom ;
Baek, Minkyung ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Baker, David .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]   Highly accurate protein structure prediction with AlphaFold [J].
Jumper, John ;
Evans, Richard ;
Pritzel, Alexander ;
Green, Tim ;
Figurnov, Michael ;
Ronneberger, Olaf ;
Tunyasuvunakool, Kathryn ;
Bates, Russ ;
Zidek, Augustin ;
Potapenko, Anna ;
Bridgland, Alex ;
Meyer, Clemens ;
Kohl, Simon A. A. ;
Ballard, Andrew J. ;
Cowie, Andrew ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Jain, Rishub ;
Adler, Jonas ;
Back, Trevor ;
Petersen, Stig ;
Reiman, David ;
Clancy, Ellen ;
Zielinski, Michal ;
Steinegger, Martin ;
Pacholska, Michalina ;
Berghammer, Tamas ;
Bodenstein, Sebastian ;
Silver, David ;
Vinyals, Oriol ;
Senior, Andrew W. ;
Kavukcuoglu, Koray ;
Kohli, Pushmeet ;
Hassabis, Demis .
NATURE, 2021, 596 (7873) :583-+
[10]   Critical assessment of methods of protein structure prediction (CASP)-Round XIV [J].
Kryshtafovych, Andriy ;
Schwede, Torsten ;
Topf, Maya ;
Fidelis, Krzysztof ;
Moult, John .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2021, 89 (12) :1607-1617