Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients

被引:7
作者
Diaz-Ramon, Jose Luis [1 ,2 ]
Gardeazabal, Jesus [1 ,2 ]
Izu, Rosa Maria [2 ,3 ]
Garrote, Estibaliz [4 ,5 ]
Rasero, Javier [6 ]
Apraiz, Aintzane [2 ,5 ]
Penas, Cristina [2 ,5 ]
Seijo, Sandra [7 ]
Lopez-Saratxaga, Cristina [4 ]
De la Pena, Pedro Maria [7 ]
Sanchez-Diaz, Ana [2 ,3 ]
Cancho-Galan, Goikoane [2 ,8 ]
Velasco, Veronica [1 ,9 ]
Sevilla, Arrate [2 ,10 ]
Fernandez, David
Cuenca, Iciar [7 ]
Cortes, Jesus Maria [2 ,5 ]
Alonso, Santos [10 ]
Asumendi, Aintzane [2 ,5 ]
Boyano, Maria Dolores [2 ,5 ]
机构
[1] Cruces Univ Hosp, Dermatol Serv, Baracaldo 48903, Spain
[2] Biocruces Bizkaia Hlth Res Inst, Baracaldo 48903, Spain
[3] Basurto Univ Hosp, Dermatol Serv, Bilbao 48013, Spain
[4] Basque Res & Technol Alliance BRTA, TECNALIA, Gipuzkoa 20850, Spain
[5] Univ Basque Country EHU, Dept Cell Biol & Histol, Leioa 48940, Spain
[6] Carnegie Mellon Univ, Dept Psychol, Pittsburgh, PA 15213 USA
[7] Ibermatica Innovat Inst, Zamudio 48170, Spain
[8] Basurto Univ Hosp, Pathol Serv, Bilbao 48013, Spain
[9] Cruces Univ Hosp, Pathol Serv, Baracaldo 48903, Spain
[10] Univ Basque Country EHU, Dept Genet Phys Anthropol & Anim Physiol, Leioa 48940, Spain
基金
欧盟地平线“2020”;
关键词
melanoma; biomarkers; diagnosis; prognosis; machine learning; deep learning; artificial intelligence; metastasis; disease-free; risk factors; GM-CSF; SKIN-CANCER;
D O I
10.3390/cancers15072174
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary: Early diagnosis and accurate prognosis is essential to personalize treatment and improve the survival of melanoma patients. We report here a new tool that can improve the early diagnosis of melanoma through the use of epiluminescence dermatoscopy and deep learning image analysis. By employing artificial intelligence algorithms to analyze simple serological and histopathological biomarkers, the risk of metastasis and the disease-free interval of melanoma patients can be accurately predicted. This low-cost Melanoma Clinical Decision Support System represents an effective tool to help clinicians manage melanoma patients. This study set out to assess the performance of an artificial intelligence (AI) algorithm based on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to define the metastatic progression of melanoma through serological and histopathological biomarkers, enabling dermatologists to make more informed decisions about patient management. Integrated analysis of demographic data, images of the skin lesions, and serum and histopathological markers were analyzed in a group of 196 patients with melanoma. The interleukins (ILs) IL-4, IL-6, IL-10, and IL-17A as well as IFN gamma (interferon), GM-CSF (granulocyte and macrophage colony-stimulating factor), TGF beta (transforming growth factor), and the protein DCD (dermcidin) were quantified in the serum of melanoma patients at the time of diagnosis, and the expression of the RKIP, PIRIN, BCL2, BCL3, MITF, and ANXA5 proteins was detected by immunohistochemistry (IHC) in melanoma biopsies. An AI algorithm was used to improve the early diagnosis of melanoma and to predict the risk of metastasis and of disease-free survival. Two models were obtained to predict metastasis (including "all patients" or only patients "at early stages of melanoma"), and a series of attributes were seen to predict the progression of metastasis: Breslow thickness, infiltrating BCL-2 expressing lymphocytes, and IL-4 and IL-6 serum levels. Importantly, a decrease in serum GM-CSF seems to be a marker of poor prognosis in patients with early-stage melanomas.
引用
收藏
页数:16
相关论文
共 44 条
  • [21] A deep learning system for differential diagnosis of skin diseases
    Liu, Yuan
    Jain, Ayush
    Eng, Clara
    Way, David H.
    Lee, Kang
    Bui, Peggy
    Kanada, Kimberly
    de Oliveira Marinho, Guilherme
    Gallegos, Jessica
    Gabriele, Sara
    Gupta, Vishakha
    Singh, Nalini
    Natarajan, Vivek
    Hofmann-Wellenhof, Rainer
    Corrado, Greg S.
    Peng, Lily H.
    Webster, Dale R.
    Ai, Dennis
    Huang, Susan J.
    Liu, Yun
    Dunn, R. Carter
    Coz, David
    [J]. NATURE MEDICINE, 2020, 26 (06) : 900 - +
  • [22] Bioinformatic and Machine Learning Applications in Melanoma Risk Assessment and Prognosis: A Literature Review
    Ma, Emily Z.
    Hoegler, Karl M.
    Zhou, Albert E.
    [J]. GENES, 2021, 12 (11)
  • [23] Serum markers improve current prediction of metastasis development in early-stage melanoma patients: a machine learning-based study
    Mancuso, Filippo
    Lage, Sergio
    Rasero, Javier
    Luis Diaz-Ramon, Jose
    Apraiz, Aintzane
    Perez-Yarza, Gorka
    Ariadna Ezkurra, Pilar
    Penas, Cristina
    Sanchez-Diez, Ana
    Dolores Garcia-Vazquez, Maria
    Gardeazabal, Jesus
    Izu, Rosa
    Mujika, Karmele
    Cortes, Jesus
    Asumendi, Aintzane
    Dolores Boyano, Maria
    [J]. MOLECULAR ONCOLOGY, 2020, 14 (08) : 1705 - 1718
  • [24] In Vivo Melanoma Cell Morphology Reflects Molecular Signature and Tumor
    Marconi, Alessandra
    Quadri, Marika
    Farnetani, Francesca
    Ciardo, Silvana
    Palazzo, Elisabetta
    Lotti, Roberta
    Cesinaro, Anna Maria
    Fabbiani, Luca
    Vaschieri, Cristina
    Puviani, Mario
    Magnoni, Cristina
    Kaleci, Shaniko
    Pincelli, Carlo
    Pellacani, Giovanni
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2022, 142 (08) : 2205 - +
  • [25] Mechanistic Translation of Melanoma Genetic Landscape in Enriched Pathways and Oncogenic Protein-Protein Interactions
    Massimino, Michele
    Stella, Stefania
    Micale, Giovanni
    Motta, Lucia
    Pavone, Giuliana
    Broggi, Giuseppe
    Piombino, Eliana
    Magro, Gaetano
    Parra, Hector Jose Soto
    Manzella, Livia
    Vigneri, Paolo
    [J]. CANCER GENOMICS & PROTEOMICS, 2022, 19 (03) : 350 - 361
  • [26] The Spatial Landscape of Progression and Immunoediting in Primary Melanoma at Single-Cell Resolution
    Nirmal, Ajit J.
    Maliga, Zoltan
    Vallius, Tuulia
    Quattrochi, Brian
    Chen, Alyce A.
    Jacobson, Connor A.
    Pelletier, Roxanne J.
    Yapp, Clarence
    Arias-Camison, Raquel
    Chen, Yu-An
    Lian, Christine G.
    Murphy, George F.
    Santagata, Sandro
    Sorger, Peter K.
    [J]. CANCER DISCOVERY, 2022, 12 (06) : 1518 - 1541
  • [27] Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo
    Nishimura, T
    Iwakabe, K
    Sekimoto, M
    Ohmi, Y
    Yahata, T
    Nakui, M
    Sato, T
    Habu, S
    Tashiro, H
    Sato, M
    Ohta, A
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 1999, 190 (05) : 617 - 627
  • [28] Patle A, 2013, 2013 INTERNATIONAL CONFERENCE ON ADVANCES IN TECHNOLOGY AND ENGINEERING (ICATE)
  • [29] Penas C., 2022, SCI REP-UK
  • [30] RKIP Regulates Differentiation-Related Features in Melanocytic Cells
    Penas, Cristina
    Apraiz, Aintzane
    Munoa, Iraia
    Arroyo-Berdugo, Yoana
    Rasero, Javier
    Ezkurra, Pilar A.
    Velasco, Veronica
    Subiran, Nerea
    Bosserhoff, Anja K.
    Alonso, Santos
    Asumendi, Aintzane
    Boyano, Maria D.
    [J]. CANCERS, 2020, 12 (06) : 1 - 22