Large-Data Equicontinuity for the Derivative NLS

被引:7
作者
Harrop-Griffiths, Benjamin [1 ]
Killip, Rowan [1 ]
Visan, Monica [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER-EQUATION; MODULATIONAL INSTABILITY; EXISTENCE;
D O I
10.1093/imrn/rnab374
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the derivative nonlinear Schrodinger equation in one spatial dimension, which is known to be completely integrable. We prove that the orbits of L-2 bounded and equicontinuous sets of initial data remain bounded and equicontinuous, not only under this flow, but also under the entire hierarchy. This allows us to remove the small-data restriction from prior conservation laws and global well-posedness results.
引用
收藏
页码:4601 / 4642
页数:42
相关论文
共 44 条
[1]  
Bahouri H.., 2021, arXiv
[2]  
Bahouri H, 2020, Arxiv, DOI arXiv:2012.01923
[3]   Ill-posedness for the derivative Schrodinger and generalized Benjamin-Ono equations [J].
Biagioni, HA ;
Linares, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) :3649-3659
[4]  
Bringmann B, 2021, ANN PDE, V7, DOI 10.1007/s40818-021-00111-4
[5]  
Coddington E.A., 1955, Theory of ordinary differential equations
[6]   A refined global well-posedness result for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) :64-86
[7]   Global well-posedness for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :649-669
[8]   Optimal Local Well-Posedness for the Periodic Derivative Nonlinear Schrodinger Equation [J].
Deng, Yu ;
Nahmod, Andrea R. ;
Yue, Haitian .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (02) :1061-1107
[9]   Low regularity local well-posedness of the derivative nonlinear Schrodinger equation with periodic initial data [J].
Gruenrock, Axel ;
Herr, Sebastian .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 39 (06) :1890-1920
[10]  
Grünrock A, 2005, INT MATH RES NOTICES, V2005, P2525