Trapped-ion quantum simulation of collective neutrino oscillations

被引:21
|
作者
Amitrano, Valentina [1 ,2 ]
Roggero, Alessandro [1 ,2 ]
Luchi, Piero [1 ,2 ]
Turro, Francesco [1 ,2 ]
Vespucci, Luca [1 ,2 ,3 ]
Pederiva, Francesco [1 ,2 ]
机构
[1] Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Trento, Italy
[2] INFN TIFPA Trento Inst Fundamental Phys & Applicat, Via Sommar 14, I-38123 Trento, Italy
[3] European Ctr Theoret Studies Nucl Phys & Related A, ECT, Str Tabarelle 286, Trento, Italy
关键词
FLAVOR TRANSFORMATION;
D O I
10.1103/PhysRevD.107.023007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is well known that the neutrino flavor in extreme astrophysical environments changes under the effect of three contributions: the vacuum oscillation, the interaction with the surrounding matter, and the collective oscillations due to interactions between different neutrinos. The latter adds a nonlinear contribution to the equations of motion, making the description of their dynamics complex. In this work we study various strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation. This was achieved by using a pair-neutrino decomposition designed to account for the fact that the flavor Hamiltonian, in the presence of the neutrino -neutrino term, presents an all-to-all interaction that makes the implementation of the evolution dependent on the qubit topology. We analyze the Trotter error caused by the decomposition demonstrating that the complexity of the implementation of time evolution scales polynomially with the number of neutrinos and that the noise from near-term quantum device simulation can be reduced by optimizing the quantum circuit decomposition and exploiting a full-qubit connectivity. We find that the gate complexity using second order Trotter-Suzuki formulas scales better with system size than with other decomposition methods such as quantum signal processing. We finally present the application and the results of our algorithm on a real quantum device based on trapped-ion qubits.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Backend compiler phases for trapped-ion quantum computers
    Schmale, Tobias
    Temesi, Bence
    Baishya, Alakesh
    Pulido-Mateo, Nicolas
    Krinner, Ludwig
    Dubielzig, Timko
    Ospelkaus, Christian
    Weimer, Hendrik
    Borcherding, Daniel
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM SOFTWARE (IEEE QSW 2022), 2022, : 32 - 37
  • [42] Experimental Trapped-ion Quantum Simulation of the Kibble-Zurek dynamics in momentum space
    Cui, Jin-Ming
    Huang, Yun-Feng
    Wang, Zhao
    Cao, Dong-Yang
    Wang, Jian
    Lv, Wei-Min
    Luo, Le
    del Campo, Adolfo
    Han, Yong-Jian
    Li, Chuan-Feng
    Guo, Guang-Can
    SCIENTIFIC REPORTS, 2016, 6
  • [43] Certified randomness using a trapped-ion quantum processor
    Liu, Minzhao
    Shaydulin, Ruslan
    Niroula, Pradeep
    Decross, Matthew
    Hung, Shih-Han
    Kon, Wen Yu
    Cervero-Martin, Enrique
    Chakraborty, Kaushik
    Amer, Omar
    Aaronson, Scott
    Acharya, Atithi
    Alexeev, Yuri
    Berg, K. Jordan
    Chakrabarti, Shouvanik
    Curchod, Florian J.
    Dreiling, Joan M.
    Erickson, Neal
    Foltz, Cameron
    Foss-Feig, Michael
    Hayes, David
    Humble, Travis S.
    Kumar, Niraj
    Larson, Jeffrey
    Lykov, Danylo
    Mills, Michael
    Moses, Steven A.
    Neyenhuis, Brian
    Eloul, Shaltiel
    Siegfried, Peter
    Walker, James
    Lim, Charles
    Pistoia, Marco
    NATURE, 2025, : 343 - 348
  • [44] Trapped-ion qutrit spin molecule quantum computer
    Mc Hugh, D
    Twamley, J
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [45] RECENT RESULTS IN TRAPPED-ION QUANTUM COMPUTING AT NIST
    Kielpinski, D.
    Ben-Kish, A.
    Britton, J.
    Meyer, V.
    Rowe, M. A.
    Itano, W. M.
    Wineland, D. J.
    Sackett, C.
    Monroe, C.
    QUANTUM INFORMATION & COMPUTATION, 2001, 1 : 113 - 123
  • [46] Experimental Trapped-ion Quantum Simulation of the Kibble-Zurek dynamics in momentum space
    Jin-Ming Cui
    Yun-Feng Huang
    Zhao Wang
    Dong-Yang Cao
    Jian Wang
    Wei-Min Lv
    Le Luo
    Adolfo del Campo
    Yong-Jian Han
    Chuan-Feng Li
    Guang-Can Guo
    Scientific Reports, 6
  • [47] Optimal calibration of gates in trapped-ion quantum computers
    Maksymov, Andrii
    Niroula, Pradeep
    Nam, Yunseong
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (03):
  • [48] Benchmarking a trapped-ion quantum computer with 30 qubits
    Chen, Jwo-Sy
    Nielsen, Erik
    Ebert, Matthew
    Inlek, Volkan
    Wright, Kenneth
    Chaplin, Vandiver
    Maksymov, Andrii
    Paez, Eduardo
    Poudel, Amrit
    Maunz, Peter
    Gamble, John
    QUANTUM, 2024, 8
  • [49] Trapped-Ion Quantum Logic with Global Radiation Fields
    Weidt, S.
    Randall, J.
    Webster, S. C.
    Lake, K.
    Webb, A. E.
    Cohen, I.
    Navickas, T.
    Lekitsch, B.
    Retzker, A.
    Hensinger, W. K.
    PHYSICAL REVIEW LETTERS, 2016, 117 (22)
  • [50] Holographic dynamics simulations with a trapped-ion quantum computer
    Chertkov, Eli
    Bohnet, Justin
    Francois, David
    Gaebler, John
    Gresh, Dan
    Hankin, Aaron
    Lee, Kenny
    Hayes, David
    Neyenhuis, Brian
    Stutz, Russell
    Potter, Andrew C.
    Foss-Feig, Michael
    NATURE PHYSICS, 2022, 18 (09) : 1074 - +