On K-Stability for Fano Threefolds of Rank 3 and Degree 28

被引:6
作者
Fujita, Kento [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
KAHLER-EINSTEIN METRICS; DEL PEZZO SURFACES; MINIMAL MODELS; VARIETIES; CLASSIFICATION; MANIFOLDS; 3-FOLDS; BODIES; SPACES;
D O I
10.1093/imrn/rnac190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there exists a K-stable smooth Fano threefold of the Picard rank, the anti-canonical degree and the third Betti number. © 2022 The Author(s). Published by Oxford University Press. All rights reserved.
引用
收藏
页码:12601 / 12784
页数:184
相关论文
共 57 条
[1]  
Ahmadinezhad H., ARXIV210109246V1
[2]  
Ahmadinezhad H., ARXIV
[3]  
Araujo C., 2021, ARXIV
[4]   K-polystability of Q-Fano varieties admitting Kahler-Einstein metrics [J].
Berman, Robert J. .
INVENTIONES MATHEMATICAE, 2016, 203 (03) :973-1025
[5]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[6]   OPENNESS OF UNIFORM K-STABILITY IN FAMILIES OF Q-FANO VARIETIES [J].
Blum, Harold ;
Liu, Yuchen .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2022, 55 (01) :1-41
[7]   Thresholds, valuations, and K-stability [J].
Blum, Harold ;
Jonsson, Mattias .
ADVANCES IN MATHEMATICS, 2020, 365
[8]   Uniqueness of K-polystable degenerations of Fano varieties [J].
Blum, Harold ;
Xu, Chenyang .
ANNALS OF MATHEMATICS, 2019, 190 (02) :609-656
[9]  
Boucksom S, 2014, ASTERISQUE, P1
[10]   Okounkov bodies of filtered linear series [J].
Boucksom, Sebastien ;
Chen, Huayi .
COMPOSITIO MATHEMATICA, 2011, 147 (04) :1205-1229