Microstructure and mechanical properties of in-situ Ti5Si3/TC4 composites via spark plasma sintering and hot rolling

被引:22
作者
Tao, Chongyang [1 ]
Li, Lanyun [1 ]
He, Ni [2 ]
Sun, Guodong [2 ]
Liu, Chengze [2 ]
Xu, Junjie [2 ]
Li, Mingyang [2 ]
Dong, Longlong [3 ]
Zhang, Yusheng [3 ]
Wang, Lianwen [4 ]
Li, Mingjia [2 ,5 ]
机构
[1] Xian Shiyou Univ, Sch Mat Sci & Engn, Xian 710065, Shannxi, Peoples R China
[2] Xian Rare Met Mat Inst Co Ltd, Xian, Peoples R China
[3] Northwest Inst Nonferrous Met Res, Adv Mat Res Cent, Xian 710016, Peoples R China
[4] Lanzhou Univ, Inst Mat Sci & Engn, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
[5] Xian Rare Met Mat Inst Co Ltd, 96 Weiyang Rd, Weiyang 710016, Peoples R China
基金
中国国家自然科学基金;
关键词
Titanium matrix composites; Hot rolling; Ti; 5; Si; 3; particles; Microstructures; Mechanical properties; Strengthening mechanism; TITANIUM MATRIX COMPOSITES; TENSILE PROPERTIES; EVOLUTION; ALLOY; TIB; ARCHITECTURE; DEFORMATION; BEHAVIORS;
D O I
10.1016/j.jallcom.2023.172404
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, low energy ball milling and spark plasma sintering techniques prepared the in-situ synthesized Ti5Si3 reinforced Ti-6Al-4V (TC4) matrix composites and then rolled them at high temperatures. In the composites with high Si content, the Ti5Si3 particles distributed at the interface of alpha-phase and 8-phase agglomerated and then formed a quasi-continuous network structure, which will deteriorate the plasticity of the composites. After hot rolling, the grains of the composite were significantly refined, and more Ti5Si3 particles were precipitated. With the increase in Si content, the tensile strength of sintered composites increased slightly, but the elongation decreased greatly. After hot rolling, the tensile strength of the composite increased significantly with an increment of 359.4 MPa, among which the composite with 0.6 wt% Si achieved a synchronous increase in strength and plasticity. The strengthening mechanism of sintered composites included dislocation strengthening, solution strengthening, and grain refinement, among which dislocation strengthening and grain refinement were the main strengthening mechanisms. The strengthening mechanism of rolled composites was mainly the dislocation strengthening caused by rolling, the grain refinement, and the mismatch of thermal expansion coefficient.
引用
收藏
页数:12
相关论文
共 56 条
[41]   Strength-ductility synergy of in-situ TiB/Ti6Al4V composites with tailored hierarchical TiB distributions [J].
Wang, Shuai ;
Huang, LuJun ;
An, Qi ;
Ma, ZiShuo ;
Zhang, Rui ;
Peng, Hua-Xin ;
Geng, Lin .
CERAMICS INTERNATIONAL, 2022, 48 (23) :35069-35075
[42]   Effects of rolling deformation on microstructure orientations and tensile properties of TiB/(TA15-Si) composites [J].
Wang, Shuai ;
Huang, Lujun ;
Zhang, Rui ;
An, Qi ;
Sun, Fengbo ;
Meng, Fanchao ;
Geng, Lin .
MATERIALS CHARACTERIZATION, 2022, 194
[43]   Microstructure characteristics and enhanced properties of network-structured TiB/(TA15-Si) composites via rolling deformation at different temperatures [J].
Wang, Shuai ;
An, Qi ;
Zhang, Rui ;
Jiang, Shan ;
Huang, Lujun ;
Chen, Run ;
Liu, Baoxi ;
Jiao, Yang ;
Geng, Lin .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 829
[44]   Microstructure evolution and tensile properties of as-rolled TiB/TA15 composites with network microstructure [J].
Wang, Shuai ;
Huang, Lujun ;
Jiang, Shan ;
Zhang, Rui ;
Liu, Baoxi ;
Sun, Fengbo ;
An, Qi ;
Jiao, Yang ;
Geng, Lin .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 804 (804)
[45]   Visual assessment of special rod-like α-Ti precipitates within the in situ TiC crystals and the mechanical responses of titanium matrix composites [J].
Wang, Xiaoyan ;
Li, Shaopeng ;
Han, Yuanfei ;
Huang, Guangfa ;
Mao, Jianwei ;
Lu, Weijie .
COMPOSITES PART B-ENGINEERING, 2022, 230
[46]   High temperature deformation behavior of melt hydrogenated (TiB + TiC)/Ti-6Al-4V composites [J].
Wang, Xuan ;
Wang, Liang ;
Luo, LiangShun ;
Yan, Hui ;
Li, XinZhong ;
Chen, RuiRun ;
Su, YanQing ;
Guo, JingJie ;
Fu, HengZhi .
MATERIALS & DESIGN, 2017, 121 :335-344
[47]   The effect of heat treatment on α/β phases evolution of TC4 titanium alloy fabricated by spark plasma sintering [J].
Xu, Kaihua ;
Xue, Yong ;
Zhang, Zhimin ;
Wang, Qiang ;
Yan, Jiangpeng ;
Liu, Haijun ;
Zhang, Jishi .
18TH INTERNATIONAL CONFERENCE ON METAL FORMING 2020, 2020, 50 :713-718
[48]   Microstructure evolution, mechanical properties and high temperature deformation of (TiB + TiC)/Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe titanium alloy [J].
Yang, Jianhui ;
Wei, Shi ;
Ji, Wei ;
Chang, Ruohan ;
Lu, Zichuan ;
Xiao, Shulong ;
Chen, Yuyong ;
Zhou, Haitao .
MATERIALS CHARACTERIZATION, 2022, 184
[49]   Advanced tensile properties and strain rate sensitivity of titanium matrix composites reinforced with CaTiO3 particles [J].
Yang, Jinheng ;
Shen, Jianghua ;
Liang, Yanxiang ;
Shi, Wendi ;
Chen, Biao ;
Umeda, Junko ;
Kondoh, Katsuyoshi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 897
[50]   The Sintering, Sintered Microstructure and Mechanical Properties of Ti-Fe-Si Alloys [J].
Yang, Y. F. ;
Luo, S. D. ;
Schaffer, G. B. ;
Qian, M. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2012, 43A (12) :4896-4906