On sums of two Fibonacci numbers that are powers of numbers with limited hamming weight

被引:1
作者
Vukusic, Ingrid [1 ]
Ziegler, Volker [1 ]
机构
[1] Univ Salzburg, Hellbrunnerstr 34-I, A-5020 Salzburg, Austria
基金
奥地利科学基金会;
关键词
Fibonacci numbers; Zeckendorf representation; exponential Diophantine equation; linear forms in logarithms; PERFECT POWERS; EQUATIONS;
D O I
10.2989/16073606.2023.2256477
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2018, Luca and Patel conjectured that the largest perfect power representable as the sum of two Fibonacci numbers is 3864(2) = F-36 + F-12. In other words, they conjectured that the equation (*) y(a) = F-n + F(m)has no solutions with a >= 2 and y(a) > 3864(2). While this is still an open problem, there exist several partial results. For example, recently Kebli, Kihel, Larone and Luca proved an explicit upper bound for y(a), which depends on the size of y. In this paper, we find an explicit upper bound for y(a), which only depends on the Hamming weight of y with respect to the Zeckendorf representation. More specifically, we prove the following: If y = F-n1 + <middle dot> <middle dot> <middle dot> + F-nk and equation (*) is satisfied by y and some non-negative integers n, m and a >= 2, then y(a )<= exp (C(epsilon) <middle dot> k((3+epsilon)k2)) . Here, epsilon > 0 can be chosen arbitrarily and C(epsilon) is an effectively computable constant.
引用
收藏
页码:851 / 869
页数:19
相关论文
共 11 条
  • [1] ON THE DIOPHANTINE EQUATION Fn + Fm=2a
    Bravo, Jhon J.
    Luca, Florian
    [J]. QUAESTIONES MATHEMATICAE, 2016, 39 (03) : 391 - 400
  • [2] Perfect powers from products of terms in Lucas sequences
    Bugeaud, Yann
    Luca, Florian
    Mignotte, Maurice
    Siksek, Samir
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 611 : 109 - 129
  • [3] Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers
    Bugeaud, Yann
    Mignotte, Maurice
    Siksek, Samir
    [J]. ANNALS OF MATHEMATICS, 2006, 163 (03) : 969 - 1018
  • [4] Summand minimality and asymptotic convergence of generalized Zeckendorf decompositions
    Cordwell K.
    Hlavacek M.
    Huynh C.
    Miller S.J.
    Peterson C.
    Vu Y.N.T.
    [J]. Research in Number Theory, 2018, 4 (4)
  • [5] On the nonnegative integer solutions to the equation Fn ± Fm = ya
    Kebli, Salima
    Kihel, Omar
    Larone, Jesse
    Luca, Florian
    [J]. JOURNAL OF NUMBER THEORY, 2021, 220 : 107 - 127
  • [6] On the nonnegative integer solutions of the equation Fn + Fm = ya
    Kihel, Omar
    Larone, Jesse
    [J]. QUAESTIONES MATHEMATICAE, 2021, 44 (08) : 1133 - 1139
  • [7] Luca F., 2000, QUAEST MATH, V23, P389
  • [8] On perfect powers that are sums of two Fibonacci numbers
    Luca, Florian
    Patel, Vandita
    [J]. JOURNAL OF NUMBER THEORY, 2018, 189 : 90 - 96
  • [9] On the X-coordinates of Pell equations which are Tribonacci numbers
    Luca, Florian
    Montejano, Amanda
    Szalay, Laszlo
    Togbe, Alain
    [J]. ACTA ARITHMETICA, 2017, 179 (01) : 25 - 35
  • [10] An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II
    Matveev, EM
    [J]. IZVESTIYA MATHEMATICS, 2000, 64 (06) : 1217 - 1269