Fixed-Time Adaptive Chaotic Control for Permanent Magnet Synchronous Motor Subject to Unknown Parameters and Perturbations

被引:3
作者
Yao, Qijia [1 ]
Jahanshahi, Hadi [2 ]
Bekiros, Stelios [3 ,4 ]
Liu, Jinping [5 ]
Al-Barakati, Abdullah A. [6 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[2] Inst Elect & Elect Engineers, Toronto, ON M5V 3T9, Canada
[3] Univ Malta, Fac Econ Management & Accountancy FEMA, Msida MSD2080, Malta
[4] London Sch Econ & Polit Sci, Dept Hlth Policy, LSE Hlth, London WC2A 2AE, England
[5] Hunan Normal Univ, Coll Informat Sci & Engn, Changsha 410081, Peoples R China
[6] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Syst, Commun Syst & Networks Res Grp, Jeddah 21589, Saudi Arabia
关键词
permanent magnet synchronous motor; chaotic stabilization; fixed-time control; adaptive control; BACKSTEPPING SYNCHRONIZATION; ROBUST SYNCHRONIZATION; NEURAL-CONTROL; SYSTEMS; DESIGN;
D O I
10.3390/math11143182
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the permanent magnet synchronous motor (PMSM) exhibits chaotic characteristics when its parameters fall within a certain range, which can lead to system instability. This article proposes an adaptive control strategy for achieving the fixed-time chaotic stabilization of PMSM, even in the presence of unknown parameters and perturbations. The developed controller is synthesized by combining a parametric adaptive mechanism with a fixed-time control technique. The stability analysis demonstrates that the system states under the developed controller can converge to small neighborhoods around the equilibrium point within a fixed time. Thanks to the adoption of the parametric adaptive mechanism, the developed controller is not only insensitive to unknown parameters but also robust against perturbations. Finally, simulated studies are conducted to verify and emphasize the effectiveness of the developed control strategy.
引用
收藏
页数:14
相关论文
共 60 条
[1]   A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs [J].
Aghababa, Mohammad Pourmahmood ;
Aghababa, Hasan Pourmahmood .
NONLINEAR DYNAMICS, 2012, 69 (04) :1903-1914
[2]   Chaos suppression of rotational machine systems via finite-time control method [J].
Aghababa, Mohammad Pourmahmood ;
Aghababa, Hasan Pourmahmood .
NONLINEAR DYNAMICS, 2012, 69 (04) :1881-1888
[3]   Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique [J].
Aghababa, Mohammad Pourmahmood ;
Khanmohammadi, Sohrab ;
Alizadeh, Ghassem .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (06) :3080-3091
[4]   Chaotic attitude synchronization and anti-synchronization of master-slave satellites using a robust fixed-time adaptive controller [J].
Alsaade, Fawaz W. ;
Yao, Qijia ;
Bekiros, Stelios ;
Al-zahrani, Mohammed S. ;
Alzahrani, Ali S. ;
Jahanshahi, Hadi .
CHAOS SOLITONS & FRACTALS, 2022, 165
[5]   Recurrent neural network-based technique for synchronization of fractional-order systems subject to control input limitations and faults [J].
Alsaadi, Fawaz E. ;
Jahanshahi, Hadi ;
Yao, Qijia ;
Mou, Jun .
CHAOS SOLITONS & FRACTALS, 2023, 173
[6]   Homogeneous approximation, recursive observer design, and output feedback [J].
Andrieu, Vincent ;
Praly, Laurent ;
Astolfi, Alessandro .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :1814-1850
[7]   Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations [J].
Bekiros, Stelios ;
Yao, Qijia ;
Mou, Jun ;
Alkhateeb, Abdulhameed F. ;
Jahanshahi, Hadi .
CHAOS SOLITONS & FRACTALS, 2023, 172
[8]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[9]   Geometric homogeneity with applications to finite-time stability [J].
Bhat, SP ;
Bernstein, DS .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2005, 17 (02) :101-127
[10]   Synchronization of uncertain chaotic systems via backstepping approach [J].
Bowong, S ;
Kakmeni, FMM .
CHAOS SOLITONS & FRACTALS, 2004, 21 (04) :999-1011