Upconversion particle-assisted NIR polymerization enables microdomain gradient photopolymerization at inter-particulate length scale

被引:21
作者
Hu, Peng [1 ]
Xu, Hang [1 ]
Pan, Yue [1 ]
Sang, Xinxin [1 ,2 ]
Liu, Ren [1 ,2 ]
机构
[1] Jiangnan Univ, Int Res Ctr Photorespons Mol & Mat, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Key Lab Synthet & Biol Colloids, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
关键词
SHRINKAGE; TEMPERATURE; STRESS;
D O I
10.1038/s41467-023-39440-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High crosslinking and low shrinkage stress are difficult to reconcile in the preparation of performance-enhancing photopolymer materials. Here we report the unique mechanism of upconversion particles-assisted NIR polymerization (UCAP) in reducing shrinkage stress and enhancing mechanical properties of cured materials. The excited upconversion particle emit UV-vis light with gradient intensity to the surroundings, forming a domain-limited gradient photopolymerization centered on the particle, and the photopolymer grows within this domain. The curing system remains fluid until the percolated photopolymer network is formed and starts gelation at high functional group conversion, with most of the shrinkage stresses generated by the crosslinking reaction having been released prior to gelation. Longer exposures after gelation contribute to a homogeneous solidification of cured material, and polymer materials cured by UCAP exhibit high gel point conversion, low shrinkage stress and strong mechanical properties than those cured by conventional UV polymerization techniques. High crosslinking and low shrinkage stress are difficult to reconcile in the preparation of performance-enhancing photopolymer materials.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Characterization of Ultraviolet-Cured Methacrylate Networks: From Photopolymerization to Ultimate Mechanical Properties [J].
Anastasio, R. ;
Peerbooms, W. ;
Cardinaels, R. ;
van Breemen, L. C. A. .
MACROMOLECULES, 2019, 52 (23) :9220-9231
[2]   Photopolymerization in 3D Printing [J].
Bagheri, Ali ;
Jin, Jianyong .
ACS APPLIED POLYMER MATERIALS, 2019, 1 (04) :593-611
[3]   Photoinduced Thermal Polymerization Reactions [J].
Bonardi, A. -H. ;
Bonardi, F. ;
Morlet-Savary, F. ;
Dietlin, C. ;
Noirbent, G. ;
Grant, T. M. ;
Fouassier, J. -P. ;
Dumur, F. ;
Lessard, B. H. ;
Gigmes, D. ;
Lalevee, J. .
MACROMOLECULES, 2018, 51 (21) :8808-8820
[4]   Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles [J].
Chen, Bing ;
Wang, Feng .
INORGANIC CHEMISTRY FRONTIERS, 2020, 7 (05) :1067-1081
[5]   Noninvasive in vivo 3D bioprinting [J].
Chen, Yuwen ;
Zhang, Jiumeng ;
Liu, Xuan ;
Wang, Shuai ;
Tao, Jie ;
Huang, Yulan ;
Wu, Wenbi ;
Li, Yang ;
Zhou, Kai ;
Wei, Xiawei ;
Chen, Shaochen ;
Li, Xiang ;
Xu, Xuewen ;
Cardon, Ludwig ;
Qian, Zhiyong ;
Gou, Maling .
SCIENCE ADVANCES, 2020, 6 (23)
[6]   100th Anniversary of Macromolecular Science Viewpoint: Photochemical Reaction Orthogonality in Modern Macromolecular Science [J].
Corrigan, Nathaniel ;
Boyer, Cyrille .
ACS MACRO LETTERS, 2019, 8 (07) :812-+
[7]   Seeing the Light: Advancing Materials Chemistry through Photopolymerization [J].
Corrigan, Nathaniel ;
Yeow, Jonathan ;
Judzewitsch, Peter ;
Xu, Jiangtao ;
Boyer, Cyrille .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (16) :5170-5189
[8]   Photoclick Chemistry: A Bright Idea [J].
Fairbanks, Benjamin D. ;
Macdougall, Laura J. ;
Mavila, Sudheendran ;
Sinha, Jasmine ;
Kirkpatrick, Bruce E. ;
Anseth, Kristi S. ;
Bowman, Christopher N. .
CHEMICAL REVIEWS, 2021, 121 (12) :6915-6990
[9]   Real Time-NIR/MIR-Photorheology: A Versatile Tool for the in Situ Characterization of Photopolymerization Reactions [J].
Gorsche, Christian ;
Harikrishna, Reghunathan ;
Baudis, Stefan ;
Knaack, Patrick ;
Husar, Branislav ;
Laeuger, Joerg ;
Hoffmann, Helmuth ;
Liska, Robert .
ANALYTICAL CHEMISTRY, 2017, 89 (09) :4958-4968
[10]  
Hu P., 2021, CHEMPHYSCHEM, V23, P63