Explainable, Domain-Adaptive, and Federated Artificial Intelligence in Medicine

被引:28
作者
Chaddad, Ahmad [1 ,2 ]
Lu, Qizong [1 ,2 ]
Li, Jiali [1 ,2 ]
Katib, Yousef [3 ]
Kateb, Reem [4 ]
Tanougast, Camel [5 ]
Bouridane, Ahmed [6 ]
Abdulkadir, Ahmed [7 ]
机构
[1] Guilin Univ Elect Technol, Sch Artificial Intelligence, Guilin 541004, Peoples R China
[2] Ecole Technol Super, Lab Imagery Vis & Artificial Intelligence, Montreal, PQ H3C 1K3, Canada
[3] Taibah Univ, Coll Med, Madinah 42353, Saudi Arabia
[4] Taibah Univ, Coll Comp Sci & Engn, Madinah 42353, Saudi Arabia
[5] Univ Lorraine, Lab Design Optimizat & Modeling Syst, F-57070 Metz, France
[6] Univ Sharjah, Ctr Data Analyt & Cybersecur CDAC, Sharjah 27272, U Arab Emirates
[7] CHU Vaudois, Lab Rech Neuroimagerie, CH-1011 Lausanne, Switzerland
基金
中国国家自然科学基金;
关键词
Adaptation models; Technological innovation; Sensitivity; Federated learning; Transfer learning; Training data; Transforms; Domain adaptation; explainable artificial intelligence; federated learning; ADAPTATION NETWORK; BLACK-BOX; IMAGE; SECURITY; SURVIVAL; PRIVACY; ERA; AI;
D O I
10.1109/JAS.2023.123123
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial intelligence (AI) continues to transform data analysis in many domains. Progress in each domain is driven by a growing body of annotated data, increased computational resources, and technological innovations. In medicine, the sensitivity of the data, the complexity of the tasks, the potentially high stakes, and a requirement of accountability give rise to a particular set of challenges. In this review, we focus on three key methodological approaches that address some of the particular challenges in AI-driven medical decision making. 1) Explainable AI aims to produce a human-interpretable justification for each output. Such models increase confidence if the results appear plausible and match the clinicians expectations. However, the absence of a plausible explanation does not imply an inaccurate model. Especially in highly non-linear, complex models that are tuned to maximize accuracy, such interpretable representations only reflect a small portion of the justification. 2) Domain adaptation and transfer learning enable AI models to be trained and applied across multiple domains. For example, a classification task based on images acquired on different acquisition hardware. 3) Federated learning enables learning large-scale models without exposing sensitive personal health information. Unlike centralized AI learning, where the centralized learning machine has access to the entire training data, the federated learning process iteratively updates models across multiple sites by exchanging only parameter updates, not personal health data. This narrative review covers the basic concepts, highlights relevant corner-stone and state-of-the-art research in the field, and discusses perspectives.
引用
收藏
页码:859 / 876
页数:18
相关论文
共 198 条
[1]   Unsupervised Domain Adaptation With Optimal Transport in Multi-Site Segmentation of Multiple Sclerosis Lesions From MRI Data [J].
Ackaouy, Antoine ;
Courty, Nicolas ;
Vallee, Emmanuel ;
Commowick, Olivier ;
Barillot, Christian ;
Galassi, Francesca .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
[2]  
Adadi Amina., 2020, Embedded Systems and Artificial Intelligence, Advances in Intelligent Systems and Computing, P327, DOI [DOI 10.1007/978-981-15-0947-6, DOI 10.1007/978-981-15-0947-631]
[3]  
Agbley B.L.Y., 2021, 2021 18 INT COMP C W, P238, DOI [DOI 10.1109/ICCWAMTIP53232.2021.9674116, 10.1109/iccwamtip53232.2021.9674116]
[4]   Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050 [J].
Akhlaghi, Yousef Golizadeh ;
Aslansefat, Koorosh ;
Zhao, Xudong ;
Sadati, Saba ;
Badiei, Ali ;
Xiao, Xin ;
Shittu, Samson ;
Fan, Yi ;
Ma, Xiaoli .
APPLIED ENERGY, 2021, 281
[5]   Atri-U: assisted image analysis in routine cardiovascular magnetic resonance volumetry of the left atrium [J].
Anastasopoulos, Constantin ;
Yang, Shan ;
Pradella, Maurice ;
D'Antonoli, Tugba Akinci ;
Knecht, Sven ;
Cyriac, Joshy ;
Reisert, Marco ;
Kellner, Elias ;
Achermann, Rita ;
Haaf, Philip ;
Stieltjes, Bram ;
Sauter, Alexander W. ;
Bremerich, Jens ;
Sommer, Gregor ;
Abdulkadir, Ahmed .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2021, 23 (01)
[6]  
Nguyen A, 2015, PROC CVPR IEEE, P427, DOI 10.1109/CVPR.2015.7298640
[7]   HIPAA regulations - A new era of medical-record privacy? [J].
Annas, GJ .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (15) :1486-1490
[8]  
Arefin R, 2021, IEEE INT CONF HEALT, P48, DOI [10.1109/ichi52183.2021.00020, 10.1109/ICHI52183.2021.00020]
[9]   MOFA plus : a statistical framework for comprehensive integration of multi-modal single-cell data [J].
Argelaguet, Ricard ;
Arnol, Damien ;
Bredikhin, Danila ;
Deloro, Yonatan ;
Velten, Britta ;
Marioni, John C. ;
Stegle, Oliver .
GENOME BIOLOGY, 2020, 21 (01)
[10]   Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence [J].
Bai, Xiang ;
Wang, Hanchen ;
Ma, Liya ;
Xu, Yongchao ;
Gan, Jiefeng ;
Fan, Ziwei ;
Yang, Fan ;
Ma, Ke ;
Yang, Jiehua ;
Bai, Song ;
Shu, Chang ;
Zou, Xinyu ;
Huang, Renhao ;
Zhang, Changzheng ;
Liu, Xiaowu ;
Tu, Dandan ;
Xu, Chuou ;
Zhang, Wenqing ;
Wang, Xi ;
Chen, Anguo ;
Zeng, Yu ;
Yang, Dehua ;
Wang, Ming-Wei ;
Holalkere, Nagaraj ;
Halin, Neil J. ;
Kamel, Ihab R. ;
Wu, Jia ;
Peng, Xuehua ;
Wang, Xiang ;
Shao, Jianbo ;
Mongkolwat, Pattanasak ;
Zhang, Jianjun ;
Liu, Weiyang ;
Roberts, Michael ;
Teng, Zhongzhao ;
Beer, Lucian ;
Sanchez, Lorena E. ;
Sala, Evis ;
Rubin, Daniel L. ;
Weller, Adrian ;
Lasenby, Joan ;
Zheng, Chuangsheng ;
Wang, Jianming ;
Li, Zhen ;
Schonlieb, Carola ;
Xia, Tian .
NATURE MACHINE INTELLIGENCE, 2021, 3 (12) :1081-1089