Two-level system hyperpolarization using a quantum Szilard engine

被引:15
|
作者
Spiecker, Martin [1 ,2 ]
Paluch, Patrick [1 ,2 ]
Gosling, Nicolas [2 ]
Drucker, Niv [3 ]
Matityahu, Shlomi [4 ]
Gusenkova, Daria [1 ,2 ]
Guenzler, Simon [1 ,2 ]
Rieger, Dennis [1 ,2 ]
Takmakov, Ivan [1 ,2 ]
Valenti, Francesco [2 ]
Winkel, Patrick [1 ,2 ]
Gebauer, Richard [5 ]
Sander, Oliver [5 ]
Catelani, Gianluigi [6 ]
Shnirman, Alexander [2 ,4 ]
Ustinov, Alexey V. [1 ,2 ]
Wernsdorfer, Wolfgang [1 ,2 ]
Cohen, Yonatan [3 ]
Pop, Ioan M. [1 ,2 ]
机构
[1] Karlsruhe Inst Technol, PHI, Karlsruhe, Germany
[2] Karlsruhe Inst Technol, IQMT, Eggenstein Leopoldshafen, Germany
[3] Quantum Machines, Tel Aviv, Israel
[4] Karlsruhe Inst Technol, TKM, Karlsruhe, Germany
[5] Karlsruhe Inst Technol, IPE, Eggenstein Leopoldshafen, Germany
[6] Forschungszentrum Julich, JARA Inst Quantum Informat PGI 11, Julich, Germany
基金
欧洲研究理事会;
关键词
ERROR-CORRECTION; RELAXATION;
D O I
10.1038/s41567-023-02082-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The innate complexity of solid-state physics exposes superconducting quantum circuits to interactions with uncontrolled degrees of freedom degrading their coherence. By implementing a quantum Szilard engine with an active feedback control loop, we show that a superconducting fluxonium qubit is coupled to a two-level system (TLS) environment of unknown origin, with a relatively long intrinsic energy relaxation time exceeding 50 ms. The TLSs can be cooled down, resulting in a four times lower qubit population, or they can be heated to manifest themselves as a negative-temperature environment corresponding to a qubit population of similar to 80%. We show that the TLSs and qubit are the dominant loss mechanism for each other and that qubit relaxation is independent of the TLS populations. Understanding and mitigating TLS environments is, therefore, not only crucial to improve the qubit lifetimes but also to avoid non-Markovian qubit dynamics.
引用
收藏
页码:1320 / +
页数:7
相关论文
共 50 条
  • [31] Decoherence of a quantum two-level system by spectral diffusion
    Matityahu, Shlomi
    Shnirman, Alexander
    Schoen, Gerd
    Schechter, Moshe
    PHYSICAL REVIEW B, 2016, 93 (13)
  • [32] Manipulations of Quantum State for a Two-Level Closed or Open Quantum System
    Hu, Juju
    Ke, Qiang
    Ji, Yinghua
    2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (IEEE ICIA 2017), 2017, : 531 - 534
  • [33] A quantum version of the classical Szilard engine
    Bracken, Paul
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2014, 12 (01): : 1 - 8
  • [34] Comment on "Quantum Szilard Engine" Reply
    Kim, Sang Wook
    Kim, Kang-Hwan
    Sagawa, Takahiro
    De Liberato, Simone
    Ueda, Masahito
    PHYSICAL REVIEW LETTERS, 2013, 111 (18)
  • [35] Quantum Otto engine of a two-level atom with single-mode fields
    Wang, Jianhui
    Wu, Zhaoqi
    He, Jizhou
    PHYSICAL REVIEW E, 2012, 85 (04):
  • [36] A two-level system of modeling air-breathing engine afterburners
    Senyushkin N.S.
    Kharitonov V.F.
    Russian Aeronautics (Iz VUZ), 2010, 53 (4) : 483 - 486
  • [37] Characterization of a Driven Two-Level Quantum System by Supervised Learning
    Couturier, Raphael
    Dionis, Etienne
    Guerin, Stephane
    Guyeux, Christophe
    Sugny, Dominique
    ENTROPY, 2023, 25 (03)
  • [38] Decoherence dynamics of a qubit coupled to a quantum two-level system
    Ashhab, S.
    Johansson, J. R.
    Nori, Franco
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2006, 444 (1-2): : 45 - 52
  • [39] Quantum optimal control of the driven dissipative two-level system
    Jirari, H.
    Rabitz, H.
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [40] Effect of Stochastic Fields on Spectrum of Two-level Quantum System
    Sobakinskaya, E. A.
    Pankratov, A. L.
    Vaks, V. L.
    2008 33RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES, VOLS 1 AND 2, 2008, : 352 - 353