Two-level system hyperpolarization using a quantum Szilard engine

被引:15
|
作者
Spiecker, Martin [1 ,2 ]
Paluch, Patrick [1 ,2 ]
Gosling, Nicolas [2 ]
Drucker, Niv [3 ]
Matityahu, Shlomi [4 ]
Gusenkova, Daria [1 ,2 ]
Guenzler, Simon [1 ,2 ]
Rieger, Dennis [1 ,2 ]
Takmakov, Ivan [1 ,2 ]
Valenti, Francesco [2 ]
Winkel, Patrick [1 ,2 ]
Gebauer, Richard [5 ]
Sander, Oliver [5 ]
Catelani, Gianluigi [6 ]
Shnirman, Alexander [2 ,4 ]
Ustinov, Alexey V. [1 ,2 ]
Wernsdorfer, Wolfgang [1 ,2 ]
Cohen, Yonatan [3 ]
Pop, Ioan M. [1 ,2 ]
机构
[1] Karlsruhe Inst Technol, PHI, Karlsruhe, Germany
[2] Karlsruhe Inst Technol, IQMT, Eggenstein Leopoldshafen, Germany
[3] Quantum Machines, Tel Aviv, Israel
[4] Karlsruhe Inst Technol, TKM, Karlsruhe, Germany
[5] Karlsruhe Inst Technol, IPE, Eggenstein Leopoldshafen, Germany
[6] Forschungszentrum Julich, JARA Inst Quantum Informat PGI 11, Julich, Germany
基金
欧洲研究理事会;
关键词
ERROR-CORRECTION; RELAXATION;
D O I
10.1038/s41567-023-02082-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The innate complexity of solid-state physics exposes superconducting quantum circuits to interactions with uncontrolled degrees of freedom degrading their coherence. By implementing a quantum Szilard engine with an active feedback control loop, we show that a superconducting fluxonium qubit is coupled to a two-level system (TLS) environment of unknown origin, with a relatively long intrinsic energy relaxation time exceeding 50 ms. The TLSs can be cooled down, resulting in a four times lower qubit population, or they can be heated to manifest themselves as a negative-temperature environment corresponding to a qubit population of similar to 80%. We show that the TLSs and qubit are the dominant loss mechanism for each other and that qubit relaxation is independent of the TLS populations. Understanding and mitigating TLS environments is, therefore, not only crucial to improve the qubit lifetimes but also to avoid non-Markovian qubit dynamics.
引用
收藏
页码:1320 / +
页数:7
相关论文
共 50 条
  • [21] Magnus expansion for a chirped quantum two-level system
    Nalbach, P.
    Leyton, V
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [22] Quantum decoherence of a two-level system in colored environments
    Zheng, Longli
    Peng, Yonggang
    PHYSICAL REVIEW A, 2022, 105 (05)
  • [23] Cavity optomechanics mediated by a quantum two-level system
    Pirkkalainen, J. -M.
    Cho, S. U.
    Massel, F.
    Tuorila, J.
    Heikkila, T. T.
    Hakonen, P. J.
    Sillanpaa, M. A.
    NATURE COMMUNICATIONS, 2015, 6
  • [24] A double quantum dot as an artificial two-level system
    van der Wiel, WG
    Fujisawa, T
    Tarucha, S
    Kouwenhoven, LP
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2001, 40 (3B): : 2100 - 2104
  • [25] Cavity optomechanics mediated by a quantum two-level system
    J.-M. Pirkkalainen
    S.U. Cho
    F. Massel
    J. Tuorila
    T.T. Heikkilä
    P.J. Hakonen
    M.A. Sillanpää
    Nature Communications, 6
  • [26] The effect of classical noise on a quantum two-level system
    Aguilar, Jean-Philippe
    Berglund, Nils
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (10)
  • [27] Turning a molecule into a coherent two-level quantum system
    Wang, Daqing
    Kelkar, Hrishikesh
    Martin-Cano, Diego
    Rattenbacher, Dominik
    Shkarin, Alexey
    Utikal, Tobias
    Goetzinger, Stephan
    Sandoghdar, Vahid
    NATURE PHYSICS, 2019, 15 (05) : 483 - +
  • [28] Turning a molecule into a coherent two-level quantum system
    Daqing Wang
    Hrishikesh Kelkar
    Diego Martin-Cano
    Dominik Rattenbacher
    Alexey Shkarin
    Tobias Utikal
    Stephan Götzinger
    Vahid Sandoghdar
    Nature Physics, 2019, 15 : 483 - 489
  • [29] Identification and control of a two-level open quantum system
    Xue, Zhengui
    Lin, Hai
    Lee, Tong Heng
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 6254 - 6259
  • [30] A two-level quantum system in the modulated optical field
    Jankauskas, Zigmantas
    MODERN PHYSICS LETTERS B, 2007, 21 (2-3): : 97 - 102