Removable Additive Assists Blade-Coated Large-Area Organic Solar Cell Modules Fabricated with Non-Halogenated Solvents Achieving Efficiency Over 16%

被引:18
作者
Liu, Zekun [1 ,2 ]
Fu, Yingying [1 ]
Wu, Jiang [1 ]
Yi, Xueting [1 ,2 ]
Zhao, Mengan [1 ,2 ]
Huang, Minghui [1 ,2 ]
Liu, Jian [1 ,2 ]
Xie, Zhiyuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Sch Appl Chem & Engn, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
large-area module; layer-by-layer blade-coating; non-halogenated solvent; organic solar cells; solid additive; J-AGGREGATION; SMALL MOLECULES; RECOMBINATION; ORIENTATION;
D O I
10.1002/adfm.202401558
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The critical step in commercializing organic solar cells (OSCs) involves achieving high-performance modules through environmentally friendly solvents. The incorporation of solid additives, recognized as an effective method for modulating the morphology of active layers through layer-by-layer (LBL) deposition, plays a significant role. Here, a novel volatile solid additive is introduced individually into the non-halogenated solution of donor PM6 as a morphology-modulating agent. The additive induces conformational and crystalline orientation change of PM6, resulting in enhanced and balanced charge transport in the active layer. With a focus on exciton dynamics, the optimized active layer inhibits the formation of low-energy triplet states. It facilitates strong reverse hole transfer processes, leading to more efficient exciton dissociation. The final small-area LBL blade-coated OSCs fabricated under ambient conditions achieve a power conversion efficiency (PCE) of 18.42%. Furthermore, a large-area module with an area of 28.82 cm2 is manufactured, achieving a PCE of 16.04% with a high geometric fill factor of 93.8%. This highlights the effective modulation of the active layer through the use of solid additives and provides a successful strategy for fabricating high-performance OSC modules with non-halogenated solvents. The PM6: BTP-eC9-based large-area (28.82 cm2) modules yield an impressive power conversion efficiency of 16.04% with a small cell-to-module loss. The result suggests the effectiveness of the volatile solid additive methyl nicotinate in regulating the active layer morphology and paves a new path for the fabrication of highly efficient and scalable large-area organic solar cell modules with non-halogenated solvent. image
引用
收藏
页数:13
相关论文
共 62 条
[1]   The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors [J].
Bakulin, Artem A. ;
Rao, Akshay ;
Pavelyev, Vlad G. ;
van Loosdrecht, Paul H. M. ;
Pshenichnikov, Maxim S. ;
Niedzialek, Dorota ;
Cornil, Jerome ;
Beljonne, David ;
Friend, Richard H. .
SCIENCE, 2012, 335 (6074) :1340-1344
[2]   Influence of blend microstructure on bulk heterojunction organic photovoltaic performance [J].
Brabec, Christoph J. ;
Heeney, Martin ;
McCulloch, Iain ;
Nelson, Jenny .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (03) :1185-1199
[3]  
Chen J., 2023, ADV MATER, V35
[4]   Ultrafast energy transfer from polymer donors facilitating spectral uniform photocurrent generation and low energy loss in high-efficiency nonfullerene organic solar cells [J].
Chen, Zeng ;
He, Chengliang ;
Ran, Peng ;
Chen, Xu ;
Zhang, Yao ;
Zhang, Chi ;
Lai, Runchen ;
Yang, Yang ;
Chen, Hongzheng ;
Zhu, Haiming .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (08) :3373-3380
[5]   Next-generation organic photovoltaics based on non-fullerene acceptors [J].
Cheng, Pei ;
Li, Gang ;
Zhan, Xiaowei ;
Yang, Yang .
NATURE PHOTONICS, 2018, 12 (03) :131-142
[6]   Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency [J].
Cui, Yong ;
Yao, Huifeng ;
Zhang, Jianqi ;
Xian, Kaihu ;
Zhang, Tao ;
Hong, Ling ;
Wang, Yuming ;
Xu, Ye ;
Ma, Kangqiao ;
An, Cunbin ;
He, Chang ;
Wei, Zhixiang ;
Gao, Feng ;
Hou, Jianhui .
ADVANCED MATERIALS, 2020, 32 (19)
[7]   Solid Additive-Assisted Layer-by-Layer Processing for 19% Efficiency Binary Organic Solar Cells [J].
Ding, Guanyu ;
Chen, Tianyi ;
Wang, Mengting ;
Xia, Xinxin ;
He, Chengliang ;
Zheng, Xiangjun ;
Li, Yaokai ;
Zhou, Di ;
Lu, Xinhui ;
Zuo, Lijian ;
Xu, Zhikang ;
Chen, Hongzheng .
NANO-MICRO LETTERS, 2023, 15 (01)
[8]   Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells [J].
Eisner, Flurin D. ;
Azzouzi, Mohammed ;
Fei, Zhuping ;
Hou, Xueyan ;
Anthopoulos, Thomas D. ;
Dennis, T. John S. ;
Heeney, Martin ;
Nelson, Jenny .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (15) :6362-6374
[9]   Organic Solar Cells: Understanding the Role of Forster Resonance Energy Transfer [J].
Feron, Krishna ;
Belcher, Warwick J. ;
Fell, Christopher J. ;
Dastoor, Paul C. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (12) :17019-17047
[10]   The role of charge recombination to triplet excitons in organic solar cells [J].
Gillett, Alexander J. ;
Privitera, Alberto ;
Dilmurat, Rishat ;
Karki, Akchheta ;
Qian, Deping ;
Pershin, Anton ;
Londi, Giacomo ;
Myers, William K. ;
Lee, Jaewon ;
Yuan, Jun ;
Ko, Seo-Jin ;
Riede, Moritz K. ;
Gao, Feng ;
Bazan, Guillermo C. ;
Rao, Akshay ;
Thuc-Quyen Nguyen ;
Beljonne, David ;
Friend, Richard H. .
NATURE, 2021, 597 (7878) :666-+