Influence of Precipitation Effects Induced by Large-Scale Irrigation in Northwest China on Soil Erosion in the Yellow River Basin

被引:1
作者
Huang, Ya [1 ]
Zhao, Yong [2 ]
Li, Guiping [1 ]
Yang, Jing [1 ]
Li, Yanping [1 ]
机构
[1] Hohai Univ, Coll Oceanog, Nanjing 210098, Peoples R China
[2] China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
关键词
large-scale irrigation; precipitation; soil erosion; regional climate model; Yellow River Basin; SLOPE LENGTH FACTOR; LAND-USE; WATER EROSION; LOESS PLATEAU; CLIMATE-CHANGE; MODEL; RUNOFF; REGCM4; REGION; RUSLE;
D O I
10.3390/rs15071736
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Large-scale irrigation can alter the regional water cycle process, which changes the structure and spatiotemporal distribution of local and downwind precipitation, impacting soil erosion in both the irrigated areas and the surrounding regions. However, the effects of large-scale irrigation on soil erosion in downwind vulnerable areas have not been investigated. The study used the high-resolution regional climate model (RegCM4) and the revised universal soil loss equation (RUSLE) to examine the effects of irrigation-induced precipitation in Northwest China on the frequency, distribution, and intensity of precipitation in the Yellow River Basin (YRB) under different Representative Concentration Pathways (RCPs). The response characteristics of soil erosion to the irrigation-induced precipitation effects and its relationship with slope, elevation, and land use type were analyzed as well. The results indicate that soil erosion in most regions of the YRB is below moderate, covering 84.57% of the basin. Irrigation leads to a 10% increase in summer precipitation indices (e.g., total wet-day precipitation, consecutive wet days, number of wet days with precipitation >= 1 mm, and number of heavy precipitation days with precipitation >= 12 mm) in the northwest of the basin. Irrigation also leads to a change in local circulation, resulting in reduced precipitation in the southeast of the basin, particularly under the RCP8.5 scenario. The transformation of erosion intensity between low-grade and high-grade erosion is relatively stable and small under the influence of precipitation. However, soil erosion changes display strong spatial heterogeneity, inter-annual and intra-annual fluctuations, and uncertainties. The findings of this study can be helpful for policymakers and water resource managers to better understand the impacts of large-scale irrigation on the environment and to develop sustainable water management strategies.
引用
收藏
页数:24
相关论文
共 74 条
  • [1] Methods to describe and predict soil erosion in mountain regions
    Alewell, Christine
    Meusburger, Katrin
    Brodbeck, Monika
    Banninger, Dominik
    [J]. LANDSCAPE AND URBAN PLANNING, 2008, 88 (2-4) : 46 - 53
  • [2] A global overview of studies about land management, land-use change, and climate change effects on soil organic carbon
    Beillouin, Damien
    Cardinael, Remi
    Berre, David
    Boyer, Annie
    Corbeels, Marc
    Fallot, Abigail
    Feder, Frederic
    Demenois, Julien
    [J]. GLOBAL CHANGE BIOLOGY, 2022, 28 (04) : 1690 - 1702
  • [3] China's response to a national land-system sustainability emergency
    Bryan, Brett A.
    Gao, Lei
    Ye, Yanqiong
    Sun, Xiufeng
    Connor, Jeffery D.
    Crossman, Neville D.
    Stafford-Smith, Mark
    Wu, Jianguo
    He, Chunyang
    Yu, Deyong
    Liu, Zhifeng
    Li, Ang
    Huang, Qingxu
    Ren, Hai
    Deng, Xiangzheng
    Zheng, Hua
    Niu, Jianming
    Han, Guodong
    Hou, Xiangyang
    [J]. NATURE, 2018, 559 (7713) : 193 - 204
  • [4] Cai C., 2000, J SOIL WATER CONSERV, V14, P19, DOI DOI 10.13870/J.CNKI.STBCXB.2000.02.005
  • [5] Aggregate stability in range sandy loam soils Relationships with runoff and erosion
    Canton, Y.
    Sole-Benet, A.
    Asensio, C.
    Chamizo, S.
    Puigdefabregas, J.
    [J]. CATENA, 2009, 77 (03) : 192 - 199
  • [6] Chappell A, 2016, NAT CLIM CHANGE, V6, P187, DOI [10.1038/nclimate2829, 10.1038/NCLIMATE2829]
  • [7] Effects of soil erosion and land use on spatial distribution of soil total phosphorus in a small watershed on the Loess Plateau, China
    Cheng, Yuting
    Li, Peng
    Xu, Guoce
    Li, Zhanbin
    Gao, Haidong
    Zhao, Binhua
    Wang, Tian
    Wang, Feichao
    Cheng, Shengdong
    [J]. SOIL & TILLAGE RESEARCH, 2018, 184 : 142 - 152
  • [8] Assessment of mercury erosion by surface water in Wanshan mercury mining area
    Dai, ZhiHui
    Feng, Xinbin
    Zhang, Chao
    Shang, Lihai
    Qiu, Guangle
    [J]. ENVIRONMENTAL RESEARCH, 2013, 125 : 2 - 11
  • [9] [邓铭江 Deng Mingjiang], 2018, [地理学报, Acta Geographica Sinica], V73, P1189
  • [10] Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China
    Fu, Bojie
    Liu, Yu
    Lu, Yihe
    He, Chansheng
    Zeng, Yuan
    Wu, Bingfang
    [J]. ECOLOGICAL COMPLEXITY, 2011, 8 (04) : 284 - 293